Patents by Inventor Lin-Yu HUANG

Lin-Yu HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955535
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11948879
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first dielectric material disposed over the device, and an opening is formed in the first dielectric material. The semiconductor device structure further includes a conductive structure disposed in the opening, and the conductive structure includes a first sidewall. The semiconductor device structure further includes a surrounding structure disposed in the opening, and the surrounding structure surrounds the first sidewall of the conductive structure. The surrounding structure includes a first spacer layer and a second spacer layer adjacent the first spacer layer. The first spacer layer is separated from the second spacer layer by an air gap.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240096997
    Abstract: Embodiments of the present disclosure provide semiconductor device structures and methods of forming the same. The structure includes a first source/drain region disposed in a PFET region and a second source/drain region disposed in an NFET region. The second source/drain region comprises a dipole region. The structure further includes a first silicide layer disposed on and in contact with the first source/drain region, a second silicide layer disposed on and in contact with the first silicide layer, and a third silicide layer disposed on and in contact with the dipole region of the second source/drain region. The first, second, and third silicide layers include different materials. The structure further includes a first conductive feature disposed over the first source/drain region, a second conductive feature disposed over the second source/drain region, and an interconnect structure disposed on the first and second conductive features.
    Type: Application
    Filed: January 15, 2023
    Publication date: March 21, 2024
    Inventors: Po-Chin Chang, Lin-Yu Huang, Li-Zhen Yu, Yuting Cheng, Sung-Li Wang, Pinyen Lin
  • Publication number: 20240063266
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a source/drain region and a first conductive feature disposed below the source/drain region. The first conductive feature is electrically connected to the source/drain region. The structure further includes a second conductive feature disposed over the source/drain region, and the second conductive feature is electrically connected to the source/drain region. The structure further includes a third conductive feature disposed on and in contact with a first portion of the second conductive feature and a dielectric layer disposed on and in contact with a second portion of the second conductive feature.
    Type: Application
    Filed: August 17, 2022
    Publication date: February 22, 2024
    Inventors: Yi-Bo LIAO, Lin-Yu HUANG
  • Publication number: 20240063093
    Abstract: A semiconductor device is provided. The semiconductor device has a stack of parallel metal gates formed on a first side of a substrate, a first pair of insulation regions extending across the stack of parallel metal gates, a second pair of insulation regions replacing two of the parallel metal gates, a first isolated region enclosed by the first and second pairs of insulation layers, a first via formed within the isolated region, and an insulation layer replacing the metal gates located within the isolated region. Tree or more metal gates are located within the isolated region, and the first via extends through a portion of a center one of the three metal gates within the isolated region.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Yi-Bo LIAO, Chun-Yuan CHEN, Lin-Yu HUANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Patent number: 11908744
    Abstract: Semiconductor device structures are provided. The semiconductor device structure includes a substrate and a first fin structure protruding from the substrate. The semiconductor device structure further includes an isolation layer formed around the first fin structure and covering a sidewall of the first fin structure and a gate stack formed over the first fin structure and the isolation layer. The semiconductor device structure further includes a first source/drain structure formed over the first fin structure and spaced apart from the gate stack and a contact structure formed over the first source/drain structure. The semiconductor device structure includes a dielectric structure formed through the contact structure. In addition, the contact structure and the dielectric structure has a first slope interface that slopes downwardly from a top surface of the contact structure to a top surface of the isolation layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20240055501
    Abstract: A semiconductor device and the manufacturing method thereof are described. The device includes semiconductor channel sheets, source and drain regions and a gate structure. The semiconductor channel sheets are arranged in parallel and spaced apart from one another. The source and drain regions are disposed beside the semiconductor channel sheets. The gate structure is disposed around and surrounding the semiconductor channel sheets. The silicide layer is disposed on the source region or the drain region. A contact structure is disposed on the silicide layer on the source region or the drain region. The contact structure includes a metal contact and a liner, and the silicide layer is in contact with the metal contact, and the liner is separate from the silicide layer by the metal contact.
    Type: Application
    Filed: August 14, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pinyen Lin, Chung-Liang Cheng, Lin-Yu Huang, Li-Zhen Yu, Huang-Lin Chao
  • Publication number: 20240055491
    Abstract: A semiconductor device includes parallel channel members, a gate structure, source/drain features, a silicide layer, and a source/drain contact. The parallel channel members are spaced apart from one another. The gate structure is wrapping around the channel members. The source/drain features are disposed besides the channel members and at opposite sides of the gate structure. The silicide layer is disposed on and in direct contact with the source/drain features. The source/drain contact is disposed on the silicide layer, wherein the source/drain contact includes a first source/drain contact and a second source/drain contact stacked on the first source/drain contact, and the second source/drain contact is separate from the silicide layer by the first source/drain contact.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hung Chu, Shuen-Shin Liang, Chung-Liang Cheng, Sung-Li Wang, Chien Chang, Harry CHIEN, Lin-Yu Huang, Min-Hsuan Lu
  • Patent number: 11901423
    Abstract: The present disclosure describes a method to form a backside power rail (BPR) semiconductor device with an air gap. The method includes forming a fin structure on a first side of a substrate, forming a source/drain (S/D) region adjacent to the fin structure, forming a first S/D contact structure on the first side of the substrate and in contact with the S/D region, and forming a capping structure on the first S/D contact structure. The method further includes removing a portion of the first S/D contact structure through the capping structure to form an air gap and forming a second S/D contact structure on a second side of the substrate and in contact with the S/D region. The second side is opposite to the first side.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: February 13, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Lin-Yu Huang
  • Publication number: 20240038719
    Abstract: A method of forming a semiconductor structure is provided. Two wafers are first bonded by oxide bonding. Next, the thickness of a first wafer is reduced using an ion implantation and separation approach, and a second wafer is thinned by using a removal process. First devices are formed on the first wafer, and a carrier is then attached over the first wafer, and an alignment process is performed from the bottom of the second wafer to align active regions of the second wafer for placement of the second devices with active regions of the first wafer for placement of the first devices. The second devices are then formed in the active regions of the second wafer. Furthermore, a via structure is formed through the first wafer, the second wafer and the insulation layer therebetween to connect the first and second devices on the two sides of the insulation layer.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Inventors: Wen-Ting LAN, I-Han HUANG, Fu-Cheng CHANG, Lin-Yu HUANG, Shi-Ning JU, Kuo-Cheng CHIANG
  • Publication number: 20240038839
    Abstract: A method for forming a semiconductor device structure includes forming nanostructures over a front side of a substrate. The method also includes forming a gate structure surrounding the nanostructures. The method also includes forming a source/drain structure beside the gate structure. The method also includes forming a trench though the substrate from a back side of the substrate. The method also includes forming a first silicide layer in contact with the source/drain structure. The method also includes forming a second silicide layer over the first silicide layer and the sidewalls of the trench. The method also includes depositing a first conductive material over the second silicide layer. The method also includes etching back the first conductive material. The method also includes etching back the second silicide layer. The method also includes depositing a second conductive material in the trench.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Inventors: Sheng-Tsung WANG, Lin-Yu HUANG, Min-Hsuan LU, Chia-Hung CHU, Shuen-Shin LIANG
  • Publication number: 20240030301
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a gate structure formed over a substrate, and a source/drain (S/D) structure formed adjacent to the gate structure. The semiconductor structure includes a gate spacer formed adjacent to the gate structure, and an etching stop layer adjacent to the gate spacer. The semiconductor structure also includes a gate mask layer formed over the gate structure, and a topmost surface of the gate mask layer is higher than a top surface of the etching stop layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Huan JAO, Lin-Yu HUANG, Huan-Chieh SU, Chih-Hao WANG
  • Publication number: 20240030316
    Abstract: A method includes forming a semiconductor strip and semiconductor layers vertically stacked over a front side of the semiconductor strip; forming a gate structure over the semiconductor layers; etching the semiconductor strip to form recesses in the semiconductor strip and on opposite sides of the gate structure; forming epitaxial layers in the recesses, respectively; forming isolation layers over the epitaxial layers, respectively; forming epitaxial source/drain structures over the isolation layers, respectively; performing an etching process from a backside of the semiconductor strip to form a via opening extending through the semiconductor strip, one of the epitaxial layer, and one of the isolation layer, wherein one of the epitaxial source/drain structures is exposed through the via opening; and forming a backside via in the via opening.
    Type: Application
    Filed: July 20, 2022
    Publication date: January 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lo-Heng CHANG, Li-Zhen YU, Lin-Yu HUANG, Huan-Chieh SU, Chih-Hao WANG
  • Publication number: 20240030310
    Abstract: A method includes forming first semiconductor layers vertically stacked over a substrate; forming a gate structure over the first semiconductor layers; etching portions of the first semiconductor layers and the substrate uncovered by the substrate to form recesses; forming a spacer layer covering sidewalls of portions of the first semiconductor layers, while a bottommost one of the first semiconductor layers is uncovered by the spacer layer; etching the bottommost one of the first semiconductor layers to form a gap; forming a blocking dielectric in the gap; and forming source/drain epitaxy structures in the recesses and on opposite sides of the gate structure.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lo-Heng CHANG, Yu-Xuan HUANG, Lin-Yu HUANG, Huan-Chieh SU, Chih-Hao WANG
  • Publication number: 20240030215
    Abstract: The ability of a grounded gate NMOS (ggNMOS) device to withstand and protect against human body model (HBM) electrostatic discharge (ESD) events is greatly increased by resistance balancing straps. The resistance balancing straps are areas of high resistance formed in the substrate between an active area that includes a MOSFET of the ggNMOS device and a bulk ring that surrounds the active area. A Vss rail is coupled to the substrate beneath the MOSFET through the bulk ring. The substrate beneath the MOSFET provides base regions for parasitic transistors that switch on for the ggNMOS device to operate. The straps inhibit low resistance pathways between the base regions and the bulk ring and prevent a large portion of the ggNMOS device from being switched off while a remaining portion of the ggNMOS device remains switched on. The strap may be divided into segments inserted at strategic locations.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Inventors: Hsiao-Ching Huang, Sheng-Fu Hsu, Hao-Hua Hsu, Pin-Chen Chen, Lin-Yu Huang, Yu-Chang Jong
  • Publication number: 20240021711
    Abstract: A semiconductor structure is provided, and includes a first fin structure, a second fin structure, and a third fin structure over a substrate. The second fin structure is located between the first fin structure and the third fin structure. The semiconductor structure also includes a fin isolation structure formed between the first fin structure and the third fin structure; and a gate structure formed over the first fin structure, the second fin structure, the third fin structure and the fin isolation structure. The semiconductor structure further includes a plurality of epitaxial structures formed over the first fin structure, the second fin structure and the third fin structure. The semiconductor structure includes a dielectric material over the first epitaxial structure, the second epitaxial structure, and the third epitaxial structure; and a contact formed in the dielectric material and connected to the first epitaxial structure and the third epitaxial structure.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Ju FAN, Lin-Yu HUANG, Sheng-Tsung WANG, Huan-Chieh SU, Cheng-Chi CHUANG, Chih-Hao WANG
  • Publication number: 20240021535
    Abstract: A semiconductor device includes a semiconductor substrate, at least two source/drain features, at least two source/drain features, one or more channel layers, a gate structure, a first conductive feature, a second conductive feature, and an alignment mark. The semiconductor substrate has a first region and a second region next to the first region. The at least two source/drain features are disposed in the second region and are laterally arranged to each other. The one or more channel layers are disposed in the second region and connect the at least two source/drain features. The gate structure is disposed in the second region and engages the one or more channel layers and interposes the at least two source/drain features. The first conductive feature is disposed in the second region and is electrically coupled to the at least two source/drain features.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lin-Yu Huang, Chun-Hung Liao
  • Publication number: 20240023463
    Abstract: A method is provided for forming a memory device on a backside portion of a wafer substrate. In one step, a circuit device is formed on a frontside portion of the wafer substrate. In one step, the wafer substrate is etched to form a substrate indentation that exposes a portion of a circuit device. In one step, a memory device is formed, at least in part, in the substrate indentation.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Liang CHENG, Lin-Yu HUANG, Wen-Ting LAN, Li-Zhen YU, Huang-Lin CHAO, Pinyen LIN
  • Publication number: 20240021673
    Abstract: A semiconductor device includes two source/drain features, a gate structure, a first contact plug, a second contact plug, a conductive line, and a nitride capping layer. The two source/drain features are laterally arranged to each other. The one or more channel layers connects the two source/drain features. The gate structure engages the one or more channel layers and interposes the two source/drain features. The first contact plug extends from above a first source/drain feature of the two source/drain features to the first source/drain feature. The second contact plug extends from below a second source/drain feature of the two source/drain features to the second source/drain feature. The conductive line is disposed underneath the second contact plug and electrically coupled to the second contact plug. The nitride capping layer is disposed between the second contact plug and the conductive line.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lin-Yu Huang, Po-Chin Chang
  • Publication number: 20240021726
    Abstract: A device includes a substrate, gate stacks, source/drain (S/D) features over the substrate, S/D contacts over the S/D features, and one or more dielectric layers over the gate stacks and the S/D contacts. A via structure penetrates the one or more dielectric layers and electrically contacts one of the gate stacks and the S/D contacts. And a ferroelectric (FE) stack is over the via structure and directly contacting the via structure, wherein the FE stack includes an FE feature and a top electrode over the FE feature.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Han-Jong Chia, Bo-Feng Young, Yu-Ming Lin