Patents by Inventor Linan An

Linan An has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230082171
    Abstract: The present disclosure relates to a ceramic forging method, and belongs to the technical field of ceramic preparation. The ceramic forging method comprises a step of applying an oscillatory pressure to to-be-forged ceramic at a forging temperature to perform forging, In accordance with the ceramic forging method provided by the present disclosures, the deformation capacity and the deformation rate of a ceramic material are improved by changing a deformation mechanism of a ceramic material at the high temperature through oscillatory pressure, such that generation of micro fatigues inside the ceramic material and the deformation process of the material are greatly improved, then the ceramic material can reach the higher deformation rate and the larger deformation amount at lower temperature and pressure, and therefore ceramic forging can be achieved, and the cost is greatly reduced.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 16, 2023
    Inventors: Lei FAN, Linan AN
  • Patent number: 9878370
    Abstract: A bimodal metal nanocomposite of ceramic nanoparticles in a metal or metal alloy matrix has a microstructure showing a first “hard” phase containing the ceramic nanoparticles in the metal or metal alloy matrix, and a second “soft” phase comprising only the metal or metal alloy with few or no ceramic nanoparticles. The stiffness and yield strength of the bimodal metal nanocomposite is significantly increased compared to the metal or metal alloy alone, while the ductility of the metal or metal alloy is retained. A process for making the bimodal metal matrix nanocomposite includes milling a powder mixture of micrometer-size metal flakes and ceramic nanoparticles for a time sufficient to embed the ceramic nanoparticles into the metal flakes.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 30, 2018
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Linan An, Jinling Liu
  • Patent number: 9612164
    Abstract: A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: April 4, 2017
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Xun Gong, Linan An
  • Publication number: 20160101468
    Abstract: A bimodal metal nanocomposite of ceramic nanoparticles in a metal or metal alloy matrix has a microstructure showing a first “hard” phase containing the ceramic nanoparticles in the metal or metal alloy matrix, and a second “soft” phase comprising only the metal or metal alloy with few or no ceramic nanoparticles. The stiffness and yield strength of the bimodal metal nanocomposite is significantly increased compared to the metal or metal alloy alone, while the ductility of the metal or metal alloy is retained. A process for making the bimodal metal matrix nanocomposite includes milling a powder mixture of micrometer-size metal flakes and ceramic nanoparticles for a time sufficient to embed the ceramic nanoparticles into the metal flakes.
    Type: Application
    Filed: January 16, 2014
    Publication date: April 14, 2016
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Linan An, Jinling Liu
  • Publication number: 20150028889
    Abstract: A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventors: XUN GONG, LINAN AN
  • Patent number: 8558705
    Abstract: A RF resonator for sensing a physical or an environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator for transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: October 15, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Xun Gong, Linan An
  • Patent number: 8119057
    Abstract: A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: February 21, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Weifeng Fei, Arnold Hill, Linan An
  • Publication number: 20100321191
    Abstract: A RF resonator for sensing a physical or an environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator for transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 23, 2010
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Xun Gong, Linan An
  • Publication number: 20090209405
    Abstract: A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 20, 2009
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: Weifeng Fei, Arnold Hill, Linan An
  • Patent number: 7338202
    Abstract: Novel micro electro mechanical systems (MEMS)-based sensors for use in ultra-high temperature environments are disclosed. The MEMS-based sensors are derived from a class of polymer-derived ceramics selected from the group consisting of SiCN, SiBCN and SiAlCN. The materials of construction are such that, the sensors are capable of accurate, real-time, on-line and in-situ monitoring, suppression of combustion oscillations and detailed measurements in operating structures that have temperatures of from about 1500° K to about 2000° K, extreme pressures/turbulence and harsh chemical off gases. When the novel sensors are mounted on a hot gas path wall, such as, at a combustor exit, there can be a continuous monitoring of pressure pulses/oscillations, wall shear stress, temperature and surface heat flux.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: March 4, 2008
    Assignee: Research Foundation of the University of Central Florida
    Inventors: Jayanta S. Kapat, Linan An, Sanjeev Bharani