Patents by Inventor Linan An

Linan An has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130298978
    Abstract: Solar cells with enhanced efficiency are disclosed. An example solar cell includes a first electrode (12). The first electrode (12) includes an electron conductor film (14). A quantum dot layer (16) is coupled to the electron conductor film (14). An electrolyte solution (18) is disposed adjacent to the quantum dot layer (16). A second electrode (20) is electrically coupled to one or more of the electrolyte solution (18) and the quantum dot layer (16). The second electrode (20) includes a sulfur-containing coating compound (24), and the electrolyte is a polysulfide electrolyte.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 14, 2013
    Applicant: Honeywell International Inc.
    Inventors: Zhi Zheng, Anyuan Yin, Anna Liu, Marilyn Wang, Linan Zhao
  • Patent number: 8567420
    Abstract: A cleaning apparatus for a semiconductor wafer includes: a gas jet device including a gas nozzle which jets a first gas onto the surface of a semiconductor wafer to thin the thickness of a stagnant layer on the surface of the semiconductor wafer; and a two-fluid jet device including a two-fluid nozzle which jets droplet mist onto a region where thickness of the stagnant layer of the semiconductor wafer is thinned, the droplet mist being mixed two-fluid of a liquid and a second gas.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Minako Inukai, Hiroshi Tomita, Kaori Umezawa, Yasuhito Yoshimizu, Linan Ji
  • Patent number: 8558705
    Abstract: A RF resonator for sensing a physical or an environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator for transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: October 15, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Xun Gong, Linan An
  • Patent number: 8460736
    Abstract: The present invention relates to a stable and liquid olein fraction wherein less than 8.6% of the TAG species of said olein fraction have the general formula SMS and at least 26% of TAG species of said olein fraction have the general formula SMM, wherein S represents a saturated fatty acid and M represents a monoenoic fatty acid, which olein fraction is obtainable by fractionation of a high oleic high saturated sunflower oil; and collecting the liquid fraction. The invention further relates to a method for preparation of a stable and liquid olein fraction by low temperature fractionation of a high oleic, high saturated sunflower oil.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: June 11, 2013
    Assignee: Consejo Superior de Investigaciones Cientificas
    Inventors: Joaquin Jesus Salas Liñan, Enrique Martinez-Force, Rafael Garcés Mancheño
  • Patent number: 8455757
    Abstract: An illustrative solar cell may include an electron conductor, an absorber, a hole conductor, and one or more other layers that help reduce interfacial charge recombination within the solar cell for improved solar cell efficiency. In one example, an electron inhibiting/hole transporting layer is provided that blocks or at least substantially inhibits movement of electrons that may otherwise move from within the absorber and/or electron conductor into the hole conductor of the solar cell, while permitting holes to travel from the absorber to the hole conductor. In some cases, the electron inhibiting/hole transporting layer may be transparent or substantially transparent to incident light so that the incident light may reach the absorber material.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: June 4, 2013
    Assignee: Honeywell International Inc.
    Inventors: Marilyn Wang, Zhi Zheng, Wei Jun Wang, Linan Zhao, Xuanbin Liu
  • Publication number: 20130104987
    Abstract: An illustrative solar cell may include an electron conductor, an absorber, a hole conductor, and one or more other layers that help reduce interfacial charge recombination within the solar cell for improved solar cell efficiency. In one example, an electron inhibiting/hole transporting layer is provided that blocks or at least substantially inhibits movement of electrons that may otherwise move from within the absorber and/or electron conductor into the hole conductor of the solar cell, while permitting holes to travel from the absorber to the hole conductor. In some cases, the electron inhibiting/hole transporting layer may be transparent or substantially transparent to incident light so that the incident light may reach the absorber material.
    Type: Application
    Filed: August 17, 2009
    Publication date: May 2, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Marilyn Wang, Zhi Zheng, Wei Jun Wang, Linan Zhao, Xuanbin Liu
  • Patent number: 8426728
    Abstract: Solar cells and methods for manufacturing solar cells and/or components or layers thereof are disclosed. An example method for manufacturing a multi-bandgap quantum dot layer for use in a solar cell may include providing a first precursor compound, providing a second precursor compound, and combining a portion of the first precursor compound with a portion of the second precursor compound to form a multi-bandgap quantum dot layer that includes a plurality of quantum dots that differ in bandgap.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: April 23, 2013
    Assignee: Honeywell International Inc.
    Inventors: Linan Zhao, Zhi Zheng, Marilyn Wang, Xuanbin Liu, Huili Tang
  • Publication number: 20130068257
    Abstract: According to one embodiment, a method for cleaning a semiconductor substrate comprises supplying water vapor to a surface of a semiconductor substrate on which a concave-convex pattern is formed while heating the semiconductor substrate at a predetermined temperature, cooling the semiconductor substrate after stopping the heating and the supply of the water vapor and freezing water on the semiconductor substrate, after freezing the water, supplying pure water onto the semiconductor substrate and melting a frozen film, and after melting the frozen film, drying the semiconductor substrate.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 21, 2013
    Inventors: Hiroshi TOMITA, Minako Inukai, Hiaashi Okuchi, Linan Ji
  • Publication number: 20130061492
    Abstract: According to one embodiment, a supercritical drying apparatus comprises a chamber being hermetically sealable and configured to store a semiconductor substrate, a heater configured to heat an inner side of the chamber, a supply unit configured to supply carbon dioxide to the chamber, a discharge unit configured to discharge carbon dioxide from the chamber, and a rotation unit configured to rotate the chamber by an angle equal to or greater than 90 degrees and equal to or smaller than 180 degrees with respect to the horizontal direction.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 14, 2013
    Inventors: Hisashi OKUCHI, Hidekazu HAYASHI, Linan JI, Yohei SATO, Hiroshi TOMITA
  • Publication number: 20130055584
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate comprises introducing a semiconductor substrate, a surface of the semiconductor substrate being wet with a water-soluble organic solvent, to the inside of a chamber, hermetically sealing the chamber and increasing a temperature inside the chamber to not lower than a critical temperature of the water-soluble organic solvent, thereby bringing the water-soluble organic solvent into a supercritical state, decreasing a pressure inside the chamber and changing the water-soluble organic solvent in the supercritical state to a gas, thereby discharging the water-soluble organic solvent from the chamber, starting a supply of an inert gas into the chamber as the pressure inside the chamber decreases to atmospheric pressure, and cooling the semiconductor substrate in a state where the inert gas exists inside the chamber.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 7, 2013
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Linan Ji
  • Patent number: 8372678
    Abstract: Disclosed are solar cells and methods for making solar cells. Also disclosed are counter electrodes for solar cells including dye-sensitized and/or nanocrystal-sensitized solar cells. An example counter electrode for a solar cell may include a substrate, a microstructured template disposed on the substrate, and a layer of catalytic material disposed on the microstructured template.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 12, 2013
    Assignee: Honeywell International Inc.
    Inventors: Linan Zhao, Marilyn Wang, Zhi Zheng, Xuanbin Liu
  • Publication number: 20130019905
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 24, 2013
    Inventors: Linan JI, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Patent number: 8323465
    Abstract: A three-dimensionally ordered macroporous sensor apparatus and method of forming the same. A direct opal film associated with a number of pores can be formed by vertical deposition of one or more nanospheres on a glass substrate. The thickness of the direct opal film can be controlled by concentration of the nanospheres. A mixture of a precursor/monomer of a sensing material and a complexing agent can be filled into the pores associated with the direct opal film, such that the mixture permeates the interstitial spaces between the pores. The nanospheres may then be removed in order to form a three dimensionally-ordered macroporous electrode with an inverse opal structure. Optionally, the sensing material can be coated on an inverse opal backbone structure formed from an external inactive material and utilizing a coating operation.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: Zhi Zheng, Linan Zhao, Marilyn Wang
  • Publication number: 20120269951
    Abstract: The present invention is based on the finding that stearin fats, obtainable by dry or solvent fractionation of sunflower high-stearic and high-oleic oils, optionally with seeding with tempered stearin crystals, have a high solid fat content at temperatures higher than 30° C., even higher than cocoa butter or other high saturated tropical fats with a similar disaturated triacylglycerol content due to the presence of disaturated triacylgiycerols rich in stearic acid, and improved melting point due to the presence of arachidic and behenic acids in these disaturated triacylgiycerols, being at the same time healthier that actual fats made from palm, palm kernel and coconut oils, or hydrogenated and trasesterified vegetable oils.
    Type: Application
    Filed: October 21, 2010
    Publication date: October 25, 2012
    Applicant: Consejo Superior De Investigaciones Cientificas (CSIC)
    Inventors: Joaquín Jesús Salas Linan, Enrique Martinez Force, Miguel Angel Bootello García, Mónica Venegas Calerón, Rafael Garcés
  • Publication number: 20120085410
    Abstract: A flexible solar cell is assembled by forming a TiO2 patterned layer on a flexible substrate electrode. Quantum dots (QDs) are formed on the TiO2 patterned layer. A gasket is disposed between the flexible substrate electrode and a flexible counter electrode forming a sandwich. Electrolyte and sealant are injected between the substrate electrode and flexible counter electrode to form the flexible solar cell.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: Honeywell International Inc.
    Inventors: Marilyn Wang, Linan Zhao, Zhi Zheng, Anna Liu
  • Publication number: 20120085409
    Abstract: CdSe-quantum dots are formed on a TiO2 patterned layer by chemical deposition from a solution of aminotriacetic acid/cadmium (NTA/Cd) and sodium selenosulfate. CdSe-quantum dots are useful as sensitizers for solar cells. The conversion efficiency of light of light power to electric power is enhanced by adjusting the ratio of potassium aminotriacetate to cadmium (NTA/Cd) as well as the chemical bath deposition (CBD) temperature and time.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 12, 2012
    Applicant: Honeywell International Inc.
    Inventors: Anna Liu, Zhi Zheng, Linan Zhao, Marilyn Wang
  • Publication number: 20120082985
    Abstract: A method, system, and apparatus for analysis of a biological sample includes receiving the sample, wherein the sample includes deoxyribonucleic acid (DNA), lysing the sample to obtain access to the DNA included in the sample, purifying the DNA in the sample to isolate the DNA from other components in the sample, amplifying the DNA, separating fragments of the amplified DNA, detecting the separated fragments using laser induced fluorescence, based on the detecting, generating a profile of the DNA in the received sample, comparing the generated profile with profiles of DNA stored in a database, and upon determining that the generated profile matches one of the stored profiles, identifying the source from which the stored profile was obtained, wherein the receiving, lysing, purifying, amplifying, and detecting are performed on corresponding portions of a microfluidic device, and wherein transporting the sample and the DNA to the portions of the microfluidic device and enabling the lysing, purifying, amplifying,
    Type: Application
    Filed: August 11, 2008
    Publication date: April 5, 2012
    Inventors: Frederic Zenhausern, Ralf Lenigk, Jianing Yang, Zhi Cai, Alan Nordquist, Stanley D. Smith, David Maggiano, Mrinalini Prasad, Karem Linan, Edward Olaya, Baiju Thomas, Cedric Hurth, Darryl Cox, Mark Richard, Glen Mccarty
  • Patent number: 8119057
    Abstract: A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: February 21, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Weifeng Fei, Arnold Hill, Linan An
  • Publication number: 20120031490
    Abstract: Solar cells, methods for manufacturing a quantum dot layer for a solar cell, and methods for manufacturing solar cells are disclosed. An illustrative method for manufacturing a solar cell may include dissolving a cadmium-containing compound in a first non-aqueous solvent to form a cadmium precursor solution, dissolving a selenium-containing compound in a second non-aqueous solvent to form a selenium precursor solution, combining the cadmium precursor solution with the selenium precursor solution to form a mixed solution, and exposing an electron conductor film to the mixed solution. Exposing the electron conductor film to the mixed solution may cause a cadmium and selenium quantum dot layer to be provided on the electron conductor film. This is just one example method.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 9, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Anna Liu, Zhi Zheng, Linan Zhao, Marilyn Wang
  • Patent number: 8106388
    Abstract: A solar cell including a quantum dot, an electron conductor, and a rigid bridge molecule disposed between the quantum dot and the electron conductor. The rigid bridge molecule may include a first anchor group that bonds to the quantum dot and a second anchor group that bonds to the electron conductor. The solar cell may include a hole conductor that is configured to reduce the quantum dot once the quantum dot absorbs a photon and ejects an electron through the rigid bridge molecule and into the electron conductor.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 31, 2012
    Assignee: Honeywell International Inc.
    Inventors: Zhi Zheng, Wei Jun Wang, Yue Liu, Linan Zhao, Yuan Zheng