Patents by Inventor Linda Romano

Linda Romano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150221821
    Abstract: A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Inventors: Patrik Svensson, Linda Romano, Sungsoo Yi, Olga Kryliouk, Ying-Lan Chang
  • Patent number: 9093395
    Abstract: A diode includes a substrate characterized by a first dislocation density and a first conductivity type, a first contact coupled to the substrate, and a masking layer having a predetermined thickness and coupled to the semiconductor substrate. The masking layer comprises a plurality of continuous sections and a plurality of openings exposing the substrate and disposed between the continuous sections. The diode also includes an epitaxial layer greater than 5 ?m thick coupled to the substrate and the masking layer. The epitaxial layer comprises a first set of regions overlying the plurality of openings and characterized by a second dislocation density and a second set of regions overlying the set of continuous sections and characterized by a third dislocation density less than the first dislocation density and the second dislocation density. The diode further includes a second contact coupled to the epitaxial layer.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 28, 2015
    Assignee: Avogy, Inc.
    Inventors: David P. Bour, Linda Romano, Thomas R. Prunty, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Richard J. Brown
  • Patent number: 9093284
    Abstract: A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial layer of the first conductivity type coupled to the first surface of the III-nitride substrate, and a first metallic structure electrically coupled to the second surface of the III-nitride substrate. The semiconductor structure further includes an AlGaN epitaxial layer coupled to the III-nitride epitaxial layer of the first conductivity type, and a III-nitride epitaxial structure of a second conductivity type coupled to the AlGaN epitaxial layer. The III-nitride epitaxial structure comprises at least one edge termination structure.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: July 28, 2015
    Assignee: AVOGY, INC.
    Inventors: Linda Romano, Andrew P. Edwards, Richard J. Brown, David P. Bour, Hui Nie, Isik C. Kizilyalli, Thomas R. Prunty, Mahdan Raj
  • Publication number: 20150207028
    Abstract: A light emitting diode (LED) device includes a semiconductor nanowire core, and an In(Al)GaN active region quantum well shell located radially around the semiconductor nanowire core. The active quantum well shell contains indium rich regions having at least 5 atomic percent higher indium content than indium poor regions in the same shell. The active region quantum well shell has a non-uniform surface profile having at least 3 peaks. Each of the at least 3 peaks is separated from an adjacent one of the at least 3 peaks by a valley, and each of the at least 3 peaks extends at least 2 nm in a radial direction away from an adjacent valley.
    Type: Application
    Filed: December 15, 2014
    Publication date: July 23, 2015
    Inventors: Linda ROMANO, Sungsoo YI, Patrik SVENSSON, Nathan GARDNER
  • Publication number: 20150200097
    Abstract: A method of making an edge terminated semiconductor device includes providing a GaN substrate having a GaN epitaxial layer grown thereon and exposing a portion of the GaN epitaxial layer to ion implantation. The energy dose is selected to provide a resistivity that is at least 90% of maximum achievable resistivity. The method also includes depositing a conductive layer over a portion of the implanted region.
    Type: Application
    Filed: December 2, 2014
    Publication date: July 16, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150179733
    Abstract: A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.
    Type: Application
    Filed: January 12, 2015
    Publication date: June 25, 2015
    Inventors: Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, David P. Bour, Linda Romano, Thomas R. Prunty
  • Publication number: 20150179894
    Abstract: Methods of locating a plurality of light emitting diode (LED) dies in a submount include providing the plurality of LED dies across a surface of the submount, the submount including a plurality of tubs corresponding in shape and/or size with the shape and/or size of the LED dies to fill each tub with correspondingly shaped and/or sized LED die.
    Type: Application
    Filed: November 21, 2014
    Publication date: June 25, 2015
    Inventors: Scott Brad Herner, Linda Romano, Daniel Bryce Thompson, Martin Schubert, Ronald Kaneshiro
  • Publication number: 20150179895
    Abstract: A submount for light emitting diode (LED) die includes a substrate containing a plurality of tubs configured to receive an LED die, and a plurality of integrated interconnects integrated into the substrate. At least a portion of the interconnects for each tub have an exposed portion on a side of the submount and at least some of the plurality of the interconnects are not connected to other interconnects in the submount.
    Type: Application
    Filed: November 21, 2014
    Publication date: June 25, 2015
    Inventors: Scott Brad Herner, Linda Romano, Daniel Bryce Thompson, Martin Schubert
  • Publication number: 20150155372
    Abstract: A method of growing a III-nitride-based epitaxial structure is disclosed. The method includes forming a GaN-based drift layer coupled to the GaN-based substrate, where forming the GaN-based drift layer comprises doping the drift layer with indium to cause the indium concentration of the drift layer to be less than about 1×1016 cm?3 and to cause the carbon concentration of the drift layer to be less than about 1×1016 cm?3. The method also includes forming an n-type channel layer coupled to the GaN-based drift layer, forming an n-contact layer coupled to the GaN-based drift layer, and forming a second electrical contact electrically coupled to the n-contact layer.
    Type: Application
    Filed: January 30, 2015
    Publication date: June 4, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150144968
    Abstract: A method of dicing semiconductor devices includes depositing a continuous first layer over the substrate, such that the first layer imparts a compressive stress to the substrate, and etching grooves in the first layer to increase local stress at the grooves compared to stress at the remainder of the first layer located over the substrate. The method also includes generating a pattern of defects in the substrate with a laser beam, such that a location of the defects in the pattern of defects substantially corresponds to a location of at least some of the grooves in the in the first layer, and applying pressure to the substrate to dice the substrate along the grooves.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventors: Scott Brad Herner, Linda Romano, Daniel Bryce Thompson, Martin Schubert
  • Publication number: 20150140746
    Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
    Type: Application
    Filed: December 17, 2014
    Publication date: May 21, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Patent number: 9035278
    Abstract: A semiconductor device, such as an LED, includes a plurality of first conductivity type semiconductor nanowire cores located over a support, a continuous second conductivity type semiconductor layer extending over and around the cores, a plurality of interstitial voids located in the second conductivity type semiconductor layer and extending between the cores, and first electrode layer that contacts the second conductivity type semiconductor layer.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 19, 2015
    Assignee: GLO AB
    Inventors: Patrik Svensson, Linda Romano, Sungsoo Yi, Olga Kryliouk, Ying-Lan Chang
  • Publication number: 20150132899
    Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Patent number: 9006800
    Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drift region, a gate region at least partially surrounding the channel region, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region. The source includes a GaN-layer coupled to an InGaN layer. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 14, 2015
    Assignee: Avogy, Inc.
    Inventors: Linda Romano, Andrew Edwards, Dave P. Bour, Isik C. Kizilyalli
  • Patent number: 8969912
    Abstract: A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 3, 2015
    Assignee: Avogy, Inc.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Patent number: 8946788
    Abstract: A method of growing a III-nitride-based epitaxial structure includes providing a substrate in an epitaxial growth reactor and heating the substrate to a predetermined temperature. The method also includes flowing a gallium-containing gas into the epitaxial growth reactor and flowing a nitrogen-containing gas into the epitaxial growth reactor. The method further includes flowing a gettering gas into the epitaxial growth reactor. The predetermined temperature is greater than 1000° C.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: February 3, 2015
    Assignee: Avogy, Inc.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Patent number: 8941117
    Abstract: An integrated device including a vertical III-nitride FET and a Schottky diode includes a drain comprising a first III-nitride material, a drift region comprising a second III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, and a channel region comprising a third III-nitride material coupled to the drift region. The integrated device also includes a gate region at least partially surrounding the channel region, a source coupled to the channel region, and a Schottky contact coupled to the drift region. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride FET and the Schottky diode is along the vertical direction.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: January 27, 2015
    Assignee: Avogy, Inc.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David P. Bour, Richard J. Brown, Thomas R. Prunty
  • Publication number: 20150017792
    Abstract: A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: David P. Bour, Richard J. Brown, Isik C. Kizilyalli, Thomas R. Prunty, Linda Romano, Andrew P. Edwards, Hui Nie, Mahdan Raj
  • Patent number: 8933532
    Abstract: A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 13, 2015
    Assignee: Avogy, Inc.
    Inventors: Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, David P. Bour, Linda Romano, Thomas R. Prunty
  • Patent number: 8927999
    Abstract: An edge terminated semiconductor device is described including a GaN substrate; a doped GaN epitaxial layer grown on the GaN substrate including an ion-implanted insulation region, wherein the ion-implanted region has a resistivity that is at least 90% of maximum resistivity and a conductive layer, such as a Schottky metal layer, disposed over the GaN epitaxial layer, wherein the conductive layer overlaps a portion of the ion-implanted region. A Schottky diode is prepared using the Schottky contact structure.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 6, 2015
    Assignee: Avogy, Inc.
    Inventors: Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, David Bour, Richard J. Brown, Thomas R. Prunty