Patents by Inventor Linda S. Schadler Feist

Linda S. Schadler Feist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10138331
    Abstract: The present disclosure relates to a matrix-free polymer nanocomposite. The matrix-free polymer nanocomposite includes a plurality of polymer brush grafted nanoparticles, which form the nanocomposite in the absence of a polymeric matrix. The polymer brush grafted to the nanoparticles comprises a multimodal brush configuration having at least two different populations of polymer ligands of different lengths. The present disclosure also relates to an optic or optoelectronic component comprising a matrix-free polymer nanocomposite as described herein. The present disclosure further relates to a method of making a matrix-free polymer nanocomposite.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 27, 2018
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Ying Li, Linda S. Schadler Feist, Chaitanya Ullal, Charles S. S. Goodwin, Robert F. Karlicek, Jr.
  • Publication number: 20170044327
    Abstract: The present disclosure relates to a matrix-free polymer nanocomposite. The matrix-free polymer nanocomposite includes a plurality of polymer brush grafted nanoparticles, which form the nanocomposite in the absence of a polymeric matrix. The polymer brush grafted to the nanoparticles comprises a multimodal brush configuration having at least two different populations of polymer ligands of different lengths. The present disclosure also relates to an optic or optoelectronic component comprising a matrix-free polymer nanocomposite as described herein. The present disclosure further relates to a method of making a matrix-free polymer nanocomposite.
    Type: Application
    Filed: April 24, 2015
    Publication date: February 16, 2017
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Ying LI, Linda S. Schadler FEIST, Chaitanya ULLAL, Charles S.S. GOODWIN, Robert F. KARLICEK, Jr.
  • Patent number: 9475922
    Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: October 25, 2016
    Assignee: University of South Carolina
    Inventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
  • Publication number: 20150344678
    Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
  • Patent number: 9109070
    Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: August 18, 2015
    Assignee: University of South Carolina
    Inventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
  • Publication number: 20150045516
    Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 12, 2015
    Inventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
  • Patent number: 8865796
    Abstract: Methods of synthesizing a binary polymer functionalized nanoparticle are generally provided. In one embodiment, a first anchoring compound is attached to a nanoparticle, and a first plurality of first monomers are polymerized on the first anchoring compound to form a first polymeric chain covalently bonded to the nanoparticle via the first anchoring compound. In another embodiment, a first polymeric chain can be attached to the nanoparticle, where the first polymeric chain has been polymerized prior to attachment to the nanoparticle. Thereafter, a second anchoring compound is attached to the nanoparticle, and a second plurality of second monomers are polymerized on the second anchoring compound to form a second polymeric chain covalently bonded to the nanoparticle via the second anchoring compound. Nanoparticles are also generally provided having multiple polymeric assemblies.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 21, 2014
    Assignee: University of South Carolina
    Inventors: Brian C. Benicewicz, Atri Rungta, Anand Viswanath, Linda S. Schadler Feist, Douglas Dukes
  • Patent number: 8436076
    Abstract: A method for preparing a polyester nanocomposite is presented. The method comprises coating nanoparticles with a dicarboxylic acid. Combining the dicarboxylic acid coated nanoparticles with a coupling agent resulting in a first mixture. Then combining the first mixture with a polyester to form a polyester nanocomposite. The resulting polyester nanocomposite has among other properties a glass transition temperature greater than the polyester itself and also a crystallization temperature less than the polyester itself.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: May 7, 2013
    Assignees: Rensselaer Polytechnic Institute, Albany International Corp.
    Inventors: Praveen Bhimaraj, Crayton Gregory Toney, Linda S. Schadler-Feist, Richard W. Siegel
  • Publication number: 20080113189
    Abstract: Polyester nanocomposites and methods of preparation thereof are presented.
    Type: Application
    Filed: August 27, 2007
    Publication date: May 15, 2008
    Applicants: RENSSELAER POLYTECHNIC INSTITUTE, ALBANY INTERNATIONAL CORP.
    Inventors: Praveen Bhimaraj, Crayton Gregory Toney, Linda S. Schadler-Feist, Richard W. Siegel
  • Patent number: 6960378
    Abstract: A process for producing microtubes from nanoparticles includes forming a dispersion of the nanoparticles in a liquid phase and freeze-drying the dispersion to produce microtubes. The nanoparticles have surface functionality capable of self-bonding and bonding with the liquid phase during freeze-drying, particularly surface hydroxy functionality.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: November 1, 2005
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Richard W. Siegel, Linda S. Schadler Feist, Dongling Ma
  • Patent number: 6782154
    Abstract: An ultrafast all-optical nonlinear switch. The switch has as components a substrate and a material disposed on the substrate. In one embodiment, the material includes a plurality of single-walled carbon nanotubes and a polymer forming a composite. Preferably, the polymer is polyimide. In another embodiment, the material includes a plurality of single-walled carbon nanotubes incorporated into a silica. The nanotube loading in the material is less than about 0.1 wt %. The material is a substantially transparent, third-order nonlinear optical material. The switch has a switching speed of less than 1 picosecond for light with a wavelength of about 1.55 micrometers. Also disclosed is a process for preparing the ultrafast all-optical nonlinear switch.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Yiping Zhao, Yuchuan Chen, Xi-Cheng Zhang, Nachiket R. Raravikar, Pulickel M. Ajayan, Toh-Ming Lu, Gwo-Ching Wang, Linda S. Schadler Feist
  • Publication number: 20020176650
    Abstract: An ultrafast all-optical nonlinear switch. The switch has as components a substrate and a material disposed on the substrate. In one embodiment, the material includes a plurality of single-walled carbon nanotubes and a polymer forming a composite. Preferably, the polymer is polyimide. In another embodiment, the material includes a plurality of single-walled carbon nanotubes incorporated into a silica. The nanotube loading in the material is less than about 0.1 wt %. The material is a substantially transparent, third-order nonlinear optical material. The switch has a switching speed of less than 1 picosecond for light with a wavelength of about 1.55 micrometers. Also disclosed is a process for preparing the ultrafast all-optical nonlinear switch.
    Type: Application
    Filed: February 12, 2002
    Publication date: November 28, 2002
    Inventors: Yiping Zhao, Yuchuan Chen, Xi-Cheng Zhang, Nachiket R. Raravikar, Pulickel M. Ajayan, Toh-Ming Lu, Gwo-Ching Wang, Linda S. Schadler Feist