Patents by Inventor Lindsey Lee Leitzel

Lindsey Lee Leitzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118005
    Abstract: A heat exchanger for use in an outdoor environment with a heat pump system is provided. The heat exchanger includes a first set of tubes arranged in a parallel flow manner between a first manifold and a second manifold, wherein central straight portions of adjacent tubes are disposed with a space therebetween along each tube of the first set of tube between the first and second manifolds. A second set of tubes are arranged in a parallel flow manner between a third manifold and a fourth manifold, wherein central straight portions of adjacent tubes within the second set of tubes are at least partially disposed within the space between adjacent tubes of the first set of tubes. A fluid that flows through the first set of tubes additionally flows through the second set of tubes before the fluid returns to again flow through the first set of tubes.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 11, 2024
    Inventors: Scott KENT, Robert Louis RUNK, Lindsey Lee LEITZEL, Szymon WALCZAK
  • Publication number: 20230302875
    Abstract: A heat storage heat pump heater (HSHPH) incorporated into a heating, ventilation, and air conditioning (HVAC) system that provides heat to maintain the temperature in a compartment (e.g., a cabin of an electric vehicle) during both a heating cycle and defrosting cycle. This HSHPH contains a heat exchanger having an inlet and an outlet located in one or more manifolds and a core that includes one or more refrigerant tubes through which a refrigerant flows and a plurality of fins that extend between the tubes, the one or more refrigerant tubes being in fluid communication with the inlet and the outlet; and a phase change material (PCM) configured to store heat transferred from the refrigerant during a heating cycle and to transfer heat to the refrigerant during a defrosting cycle. The PCM changes phase at a temperature that is greater than or equal to 24° C.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventors: Yanping Xia, Lindsey Lee Leitzel, Gary Scott Vreeland, Timothy D. Craig, Edward Wolfe, IV
  • Publication number: 20200158388
    Abstract: An evaporator for an air conditioning system includes a plurality of clamshell plates stacked in series along a longitudinal axis and a plurality of core tubes coupled with the stacked clamshell plates. In an upper region of the evaporator, the stacked clamshell plates form an inlet tank and an outlet tank hydraulically communicated with the core tubes for a refrigerant flow. Each of the clamshell plates includes a pooling ridge on a first surface of the clamshell plate for pooling a liquid refrigerant by gravity such that the liquid refrigerant is evenly distributed to inlet core tubes disposed along the longitudinal axis.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Gary Scott Vreeland, Yanping Xia, Edward Wolfe, IV, Carrie M. Kowsky, Lindsey Lee Leitzel
  • Publication number: 20090211293
    Abstract: An air conditioning system for circulating a refrigerant includes a condenser having a vapor inlet for condensing the refrigerant into a high-pressure liquid having a first predetermined temperature. A heat exchanger including an exhaust channel directs air therethrough. The heat exchanger further includes a refrigerant inlet in fluid communication with a refrigerant outlet for receiving a high-pressure liquid and for delivering the high-pressure liquid therethrough. Furthermore, a heat mass exchanger outputs wet working air having a second predetermined temperature. The heat exchanger is in fluid communication with the heat mass exchanger for receiving the working air having a temperature less than the high-pressure liquid. The working air flows through the exhaust channel and over the high-pressure liquid to transfer heat from the high-pressure liquid to the working air for reducing the temperature of the high-pressure liquid.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 27, 2009
    Inventors: Edward Wolfe, IV, Ilya Reyzin, Lindsey Lee Leitzel
  • Patent number: 6637229
    Abstract: An improved control method for a vehicle air conditioning system including a refrigerant compressor and a condenser cooling fan adjusts the power consumption of the condenser cooling fan in a manner to minimize the combined power consumption of compressor and the condenser cooling fan while maintaining adequate cooling of the condensed refrigerant. When the air conditioning system is operating at less than full capacity, the combined power consumption of the compressor and the condenser cooling fan is determined for each of a series of operating intervals. The change in the combined power consumption from one operating interval to the next is computed to determine the effect of a prior cooling fan power adjustment, and the power level of the cooling fan is incrementally adjusted in the same direction as the prior adjustment so long as the prior adjustment resulted in at least a specified reduction of the combined power consumption.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: October 28, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Wayne Oliver Forrest, Lawrence Scherer, Nicholas Joseph Alonge, Jr., Frank A. Krueger, Lindsey Lee Leitzel, Paul J. Bruski
  • Patent number: 6390217
    Abstract: An assembly is provided to increase the efficiency of a vehicle engine cooling and supplementary, heat pump type cabin heating system. A flexible panel located in front of and below the front end heat exchanger can be moved between open and blocking positions. An engine cooling radiator and fan are located behind the front end heat exchanger. In cold weather heating mode, the flexible panel can be rolled to the blocking position, preventing the direct flow of cold outside ram air through the front end heat exchanger. At the same time, the fan is reversed, flowing heated air from the radiator through the front end heat exchanger, improving its efficiency.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 21, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: John F. O'Brien, Robert Michael Runk, Lindsey Lee Leitzel
  • Patent number: 6357242
    Abstract: An improved system and method for suppressing high side pressure transients in a motor vehicle air conditioning system due to engine speed transients during vehicle acceleration through the use of a throttling valve. The throttling valve may be mechanically or electrically activated, and is connected in the low pressure side of the air conditioning system to controllably restrict refrigerant flow in response to one or more parameters that detect or anticipate a high side transient pressure condition. The parameters may include the high side pressure itself, or engine parameters such as engine speed and vehicle speed. In a preferred embodiment, the throttling valve may be controlled to prevent evaporator icing in addition to suppressing high side pressure transients.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: March 19, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Dennis Lee Farley, Mingyu Wang, Lindsey Lee Leitzel