Patents by Inventor Lindsey Michelle Sunden

Lindsey Michelle Sunden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963745
    Abstract: Various embodiments provide a wellness tracking device with a base plate that may be utilized as a combination electrode by a variety of sensors. The base plate may be a multi-material electrode that includes a conductor and a transparent or semi-transparent material to enable optical sensing. In certain embodiments, the base plate supports a plurality of different sensors, which may selectively utilize the base plate as an electrode.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: April 23, 2024
    Assignee: FITBIT, INC.
    Inventors: Jens Mitchell Nielsen, Jaclyn Leverett Wasson, Kyung Nim Noh, Man-Chi Liu, Alan Luu, Peter Colin Dess, Lindsey Michelle Sunden, Lukas Bielskis, Thomas Consolazio, Steven Thomas Woodward, Dennis Jacob McCray
  • Patent number: 11950914
    Abstract: Multiple circuits in a computing device can share one or more conductive elements. The use of the conductive element can vary by circuit, such as an antenna radiator for a radio frequency (RF) circuit or an electrode for an electrocardiography (ECG) circuit. The circuitry sharing a conductive element can utilize signals obtained over different frequency ranges. Those ranges can be used to select decoupling circuitry, or elements, that can enable the respective circuits to obtain signals over a respective frequency range, excluding signals over one or more other frequency ranges corresponding to other circuitry sharing the circuit. Such an approach allows for concurrent independent operation of the circuitry sharing a conductive element.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: April 9, 2024
    Assignee: Fitbit, Inc.
    Inventors: Faton Tefiku, Yonghua Wei, Kevin Li, Man-Chi Liu, Lindsey Michelle Sunden, Peter W. Richards, Dennis Jacob McCray, Christos Kinezos Ioannou, Kyung Nim Noh
  • Publication number: 20240032805
    Abstract: Various embodiments provide a wellness tracking device with a base plate that may be utilized as a combination electrode by a variety of sensors. The base plate may be a multi-material electrode that includes a conductor and a transparent or semi-transparent material to enable optical sensing. In certain embodiments, the base plate supports a plurality of different sensors, which may selectively utilize the base plate as an electrode.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 1, 2024
    Inventors: Jens Mitchell Nielsen, Jaclyn Leverett Wasson, Kyung Nim Noh, Man-Chi Liu, Alan Luu, Peter Colin Dess, Lindsey Michelle Sunden, Lukas Bielskis, Thomas Consolazio, Steven Thomas Woodward, Dennis Jacob McCray
  • Patent number: 11857336
    Abstract: Arousal events can be determined for a user associated with a wearable device, such as a user wearing a wearable computing device including one or more sensors. The one or more sensors may obtain EDA information that may determine a sympathetic nervous system response of the user, which may be responsive to an arousal event or an activation. Detection of events that increase the EDA response may provide information to the user regarding arousal events and provide recommendations to the user to address the arousal events to decrease their response.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 2, 2024
    Assignee: FITBIT LLC
    Inventors: Man-Chi Liu, Alexander Statan, Derrick Steven Vickers, Paul Francis Stetson, Elena Perez, James Horng-Kuang Lin, Belen Lafon, Lindsey Michelle Sunden
  • Patent number: 11850071
    Abstract: The accuracy of physiological data measured through contact with skin can be validated by characterizing the forces at the surfaces where data is measured. Conventional devices do not monitor the fit of skin-based sensors, making the accuracy and confidence in physiological data dependent on the user ensuring that the device is fitted properly. Over time, the seating of a device will vary due to changes in user activity and the need to periodically remove a device. Inevitably, instances will arise where the device is not fitted correctly, which may result in skewed physiological metrics. By monitoring the forces acting on the housing of a device, the interface of skin sensors can be characterized allowing for confidence metrics in the corresponding physiological data to be determined. In some cases, a user can be notified when a device is not seated properly, and in some cases, data may even be calibrated based on the fit of a device.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 26, 2023
    Assignee: Fitbit, Inc.
    Inventors: Brett Adam Coakley, Peter Colin Dess, Daniel Joel Freschl, Lindsey Michelle Sunden, Suraj Gowda, Tracy Norman Giest, Aditya Vivekanand Nadkarni
  • Patent number: 11766215
    Abstract: Arousal events can be determined for a user associated with a wearable device, such as a user wearing a wearable computing device including one or more sensors. The one or more sensors may obtain EDA information that may determine a sympathetic nervous system response of the user, which may be responsive to an arousal event or an activation. Detection of events that increase the EDA response may provide information to the user regarding arousal events and provide recommendations to the user to address the arousal events to decrease their response.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: September 26, 2023
    Assignee: FITBIT LLC
    Inventors: Man-Chi Liu, Alexander Statan, Derrick Steven Vickers, Paul Francis Stetson, Elena Perez, James Horng-Kuang Lin, Belen Lafon, Lindsey Michelle Sunden
  • Publication number: 20230270387
    Abstract: The accuracy of physiological data measured through contact with skin can be validated by characterizing the forces at the surfaces where data is measured. Conventional devices do not monitor the fit of skin-based sensors, making the accuracy and confidence in physiological data dependent on the user ensuring that the device is fitted properly. Over time, the seating of a device will vary due to changes in user activity and the need to periodically remove a device. Inevitably, instances will arise where the device is not fitted correctly, which may result in skewed physiological metrics. By monitoring the forces acting on the housing of a device, the interface of skin sensors can be characterized allowing for confidence metrics in the corresponding physiological data to be determined. In some cases, a user can be notified when a device is not seated properly, and in some cases, data may even be calibrated based on the fit of a device.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Brett Adam Coakley, Peter Colin Dess, Daniel Joel Freschl, Lindsey Michelle Sunden, Suraj Gowda, Tracy Norman Giest, Aditya Vivekanand Nadkarni
  • Publication number: 20230240583
    Abstract: A wellness tracking device includes a plurality of electrodes to receive biometric data from a user. The electrodes may receive an input from the user and transmit information, such as electrical data related to the heart or skin conductance, in order to measurement one or more physical properties. The electrodes may be arranged within the form factor provided by the wellness tracking device and also electrically isolated to provide independent data acquisition for the electrodes. Arrangement of the electrodes may be particularly selected to provide an ergonomic arrangement to enable the user to comfortably provide input data.
    Type: Application
    Filed: July 21, 2021
    Publication date: August 3, 2023
    Inventors: Lindsey Michelle Sunden, Jens Mitchell Nielsen, Anthony Zahi Faranesh, Man-Chi Liu, Jaclyn Leverett Wasson, Kyung Nim Noh
  • Publication number: 20230157610
    Abstract: Multiple circuits in a computing device can share one or more conductive elements. The use of the conductive element can vary by circuit, such as an antenna radiator for a radio frequency (RF) circuit or an electrode for an electrocardiography (ECG) circuit. The circuitry sharing a conductive element can utilize signals obtained over different frequency ranges. Those ranges can be used to select decoupling circuitry, or elements, that can enable the respective circuits to obtain signals over a respective frequency range, excluding signals over one or more other frequency ranges corresponding to other circuitry sharing the circuit. Such an approach allows for concurrent independent operation of the circuitry sharing a conductive element.
    Type: Application
    Filed: November 21, 2022
    Publication date: May 25, 2023
    Inventors: Faton Tefiku, Yonghua Wei, Kevin Li, Man-Chi Liu, Lindsey Michelle Sunden, Peter W. Richards, Dennis Jacob McCray, Christos Kinezos Ioannou, Kyung Nim Noh
  • Patent number: 11642077
    Abstract: Sleep tracking systems and techniques for monitoring two or more co-sleepers in a single bed are disclosed. Such systems and techniques may incorporate sleeper identification, as well as various non-user-specific aspects. Some implementations may incorporate user-specific or user-tailored alarm functionality.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 9, 2023
    Assignee: FITBIT, INC.
    Inventors: Juan Ignacio Correa Ramírez, Conor Joseph Heneghan, Lindsey Michelle Sunden, Lin Yang, Lukas Bielskis, Thomas Samuel Elliot, Benjamin B. Perkins, Priya Vijay Sheth, Jose Roberto Melgoza, Nicholas Adrian Myers, Chris H. Sarantos, Andrew Larsen Axley, Jaydip Das, Samuel Barry Tellman, Man-Chi Liu, Jeffrey Andrew Fisher
  • Publication number: 20230122218
    Abstract: Various embodiments provide a wellness tracking device with a base plate that may be utilized as a combination electrode by a variety of sensors. The base plate may be a multi-material electrode that includes a conductor and a transparent or semi-transparent material to enable optical sensing. In certain embodiments, the base plate supports a plurality of different sensors, which may selectively utilize the base plate as an electrode.
    Type: Application
    Filed: August 19, 2022
    Publication date: April 20, 2023
    Inventors: Jens Mitchell NIELSEN, Jaclyn Leverett WASSON, Kyung Nim NOH, Man-Chi LIU, Alan LUU, Peter Colin DESS, Lindsey Michelle SUNDEN, Lukas BIELSKIS, Thomas CONSOLAZIO, Steven Thomas WOODWARD
  • Patent number: 11504043
    Abstract: Multiple circuits in a computing device can share one or more conductive elements. The use of the conductive element can vary by circuit, such as an antenna radiator for a radio frequency (RF) circuit or an electrode for an electrocardiography (ECG) circuit. The circuitry sharing a conductive element can utilize signals obtained over different frequency ranges. Those ranges can be used to select decoupling circuitry, or elements, that can enable the respective circuits to obtain signals over a respective frequency range, excluding signals over one or more other frequency ranges corresponding to other circuitry sharing the circuit. Such an approach allows for concurrent independent operation of the circuitry sharing a conductive element.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 22, 2022
    Assignee: FITBIT, INC.
    Inventors: Yonghua Wei, Faton Tefiku, Kevin Li, Man-Chi Liu, Lindsey Michelle Sunden, Peter W. Richards, Dennis Jacob McCray, Christos Kinezos Ioannou, Kyung Nim Noh
  • Patent number: 11419504
    Abstract: Various embodiments provide a wellness tracking device with a base plate that may be utilized as a combination electrode by a variety of sensors. The base plate may be a multi-material electrode that includes a conductor and a transparent or semi-transparent material to enable optical sensing. In certain embodiments, the base plate supports a plurality of different sensors, which may selectively utilize the base plate as an electrode.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 23, 2022
    Assignee: FITBIT, INC.
    Inventors: Jens Mitchell Nielsen, Jaclyn Leverett Wasson, Kyung Nim Noh, Man-Chi Liu, Alan Luu, Peter Colin Dess, Lindsey Michelle Sunden, Lukas Bielskis, Thomas Consolazio, Steven Thomas Woodward, Dennis Jacob McCray
  • Publication number: 20220117549
    Abstract: Arousal events can be determined for a user associated with a wearable device, such as a user wearing a wearable computing device including one or more sensors. The one or more sensors may obtain EDA information that may determine a sympathetic nervous system response of the user, which may be responsive to an arousal event or an activation. Detection of events that increase the EDA response may provide information to the user regarding arousal events and provide recommendations to the user to address the arousal events to decrease their response.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Man-Chi Liu, Alexander Statan, Derrick Steven Vickers, Paul Francis Stetson, Elena Perez, James Horng-Kuang Lin, Belen Lafon, Lindsey Michelle Sunden
  • Publication number: 20220054080
    Abstract: Arousal events can be determined for a user associated with a wearable device, such as a user wearing a wearable computing device including one or more sensors. The one or more sensors may obtain EDA information that may determine a sympathetic nervous system response of the user, which may be responsive to an arousal event or an activation. Detection of events that increase the EDA response may provide information to the user regarding arousal events and provide recommendations to the user to address the arousal events to decrease their response.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 24, 2022
    Inventors: Man-Chi Liu, Alexander Statan, Derrick Steven Vickers, Paul Francis Stetson, Elena Perez, James Horng-Kuang Lin, Belen Lafon, Lindsey Michelle Sunden
  • Patent number: 11033082
    Abstract: Low-profile latching mechanisms and related mechanical interfaces for allowing straps and other fastening accessories for limb-wearable devices are provided. The mechanisms in question allow for a very strong, yet easily releasable, connection to be made between a strap accessory and a device housing, with very little of the mechanism being visible.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 15, 2021
    Assignee: Fitbit, Inc.
    Inventors: Benjamin Patrick Robert Jean Riot, Henry Michael Lubowe, Edison Tam King Miguel, Matthew Joseph Kane, Jens Mitchell Nielsen, Cédric Eric Jean-Edouard Bernard, Chadwick John Harber, Brian Dennis Paschke, Stephanie Lydia Renee Choplin, Mark Woolhiser Huang, Lindsey Michelle Sunden, Keith Adam Wong, Hamed Vavadi
  • Publication number: 20210169345
    Abstract: Disclosed herein is a ring-shaped wearable device for detecting biometrics with a light source and a photodetector directed towards a digit wearing the ring-shaped device. The ring can thus detect oxygen saturation of a wearer based on light transmitted through the wearer's finger. The ring can include power saving measures to extend the battery life. A motion sensor can help determine opportune moments for data collection such as when the wearer is still. The motion sensor can be used to remove noise from the data caused by motion. After data is collected or during data collection, the ring can wirelessly communicate the data to another portable electronic device such as a phone or watch.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 10, 2021
    Inventors: Jaclyn Leverett Wasson, Peter W. Richards, Lindsey Michelle Sunden, Corey Stephen O'Connor, Conor Joseph Heneghan, Xi Zhang, Hamed Vavadi, Chris Hanrahan Sarantos, Peter Colin Dess
  • Publication number: 20210137439
    Abstract: Multiple circuits in a computing device can share one or more conductive elements. The use of the conductive element can vary by circuit, such as an antenna radiator for a radio frequency (RF) circuit or an electrode for an electrocardiography (ECG) circuit. The circuitry sharing a conductive element can utilize signals obtained over different frequency ranges. Those ranges can be used to select decoupling circuitry, or elements, that can enable the respective circuits to obtain signals over a respective frequency range, excluding signals over one or more other frequency ranges corresponding to other circuitry sharing the circuit. Such an approach allows for concurrent independent operation of the circuitry sharing a conductive element.
    Type: Application
    Filed: October 16, 2020
    Publication date: May 13, 2021
    Inventors: Yonghua Wei, Faton Tefiku, Kevin Li, Man-Chi Liu, Lindsey Michelle Sunden, Peter W. Richards, Dennis Jacob McCray, Christos Kinezos Ioannou, Kyung Nim Noh
  • Patent number: 10966643
    Abstract: Systems and devices of the present disclosure provide automated detection and tracking of carbon monoxide inhalation through non-invasive optical spectroscopy. A wearable device includes a light source coupled to the base and directing light towards a subject and a photodetector coupled to the base to receive light emitted by the light source through or reflected the subject. The light source emits light at a wavelength spectrum corresponding to a carboxyhemoglobin absorption spectrum and an oxyhemoglobin absorption spectrum. Biometric circuitry is coupled to the photodetector to receive a signal from the photodetector and process the signal to determine an intensity of the wavelengths present in the light received at the photodetector. The intensity of the wavelengths is indicative of a level of carbon monoxide inhalation associated with the subject.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: April 6, 2021
    Assignee: Fitbit, Inc.
    Inventors: Hamed Vavadi, Lindsey Michelle Sunden, Peter W. Richards, Chris Hanrahan Sarantos
  • Patent number: 10918289
    Abstract: Disclosed herein is a ring-shaped wearable device for detecting biometrics with a light source and a photodetector directed towards a digit wearing the ring-shaped device. The ring can thus detect oxygen saturation of a wearer based on light transmitted through the wearer's finger. The ring can include power saving measures to extend the battery life. A motion sensor can help determine opportune moments for data collection such as when the wearer is still. The motion sensor can be used to remove noise from the data caused by motion. After data is collected or during data collection, the ring can wirelessly communicate the data to another portable electronic device such as a phone or watch.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 16, 2021
    Assignee: FITBIT, INC.
    Inventors: Jaclyn Leverett Wasson, Peter W. Richards, Lindsey Michelle Sunden, Corey Stephen O'Connor, Conor Joseph Heneghan, Xi Zhang, Hamed Vavadi, Chris Hanrahan Sarantos, Peter Colin Dess