Patents by Inventor Linfeng LYU

Linfeng LYU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921013
    Abstract: A one-dimensional (1D) and two-dimensional (2D) scan scheme for a tracking continuously scanning laser Doppler vibrometer (CSLDV) system to scan the whole surface of a rotating structure excited by a random force. A tracking CSLDV system tracks a rotating structure and sweep its laser spot on its surface. The measured response of the structure using the scan scheme of the tracking CSLDV system is considered as the response of the whole surface of the structure subject to random excitation. The measured response can be processed by operational modal analysis (OMA) methods (e.g., an improved lifting method, an improved demodulation method, an improved 2D demodulation method). Damped natural frequencies of the rotating structure are estimated from the fast Fourier transform of the measured response. Undamped full-field mode shapes are estimated by multiplying the measured response using sinusoids whose frequencies are estimated damped natural frequencies.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: March 5, 2024
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventors: Weidong Zhu, Linfeng Lyu
  • Publication number: 20230126566
    Abstract: A one-dimensional (1D) and two-dimensional (2D) scan scheme for a tracking continuously scanning laser Doppler vibrometer (CSLDV) system to scan the whole surface of a rotating structure excited by a random force. A tracking CSLDV system tracks a rotating structure and sweep its laser spot on its surface. The measured response of the structure using the scan scheme of the tracking CSLDV system is considered as the response of the whole surface of the structure subject to random excitation. The measured response can be processed by operational modal analysis (OMA) methods (e.g., an improved lifting method, an improved demodulation method, an improved 2D demodulation method). Damped natural frequencies of the rotating structure are estimated from the fast Fourier transform of the measured response. Undamped full-field mode shapes are estimated by multiplying the measured response using sinusoids whose frequencies are estimated damped natural frequencies.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 27, 2023
    Inventors: Weidong ZHU, Linfeng LYU