Patents by Inventor Lingchuan Li
Lingchuan Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240410075Abstract: A process for making a carbon nanotube structure includes forming a composite by depositing or growing carbon nanotubes onto a metal substrate, and infusing the carbon nanotubes. In other aspects, a method of making a wire, includes coating carbon nanotubes on a wire, and electroplating the carbon nanotubes. In still other aspects, a method of making a conductor includes growing or depositing vertically aligned carbon nanotubes on a sheet. Yet still, a method of making a cable includes forming multiple composite wires, each composite wire formed by depositing or growing carbon nanotubes onto a metal substrate, and performing a metal infusion of the carbon nanotubes. The method also comprises combining multiple finished composite wires or objects to make large cables or straps.Type: ApplicationFiled: December 20, 2023Publication date: December 12, 2024Inventors: Paul Kladitis, Brian Rice, Lingchuan Li
-
Publication number: 20240167625Abstract: Provided are microcrack-resistant compositions, apparatuses comprising microcrack-resistant materials, and methods of containing fluids. More specifically, the present disclosure provides microcrack-resistant laminate compositions comprising interdisposed vertically aligned carbon nanotubes. The present disclosure additionally provides microcrack-resistant fluid tanks. Further, the present disclosure provides methods of containing a cryogenic fluid without leaks.Type: ApplicationFiled: October 23, 2023Publication date: May 23, 2024Inventors: Brian Rice, Kevin Retz, Paul Kladitis, Lingchuan Li
-
Patent number: 11866839Abstract: A process for making a carbon nanotube structure includes forming a composite by depositing or growing carbon nanotubes onto a metal substrate, and infusing the carbon nanotubes. In other aspects, a method of making a wire, includes coating carbon nanotubes on a wire, and electroplating the carbon nanotubes. In still other aspects, a method of making a conductor includes growing or depositing vertically aligned carbon nanotubes on a sheet. Yet still, a method of making a cable includes forming multiple composite wires, each composite wire formed by depositing or growing carbon nanotubes onto a metal substrate, and performing a metal infusion of the carbon nanotubes. The method also comprises combining multiple finished composite wires or objects to make large cables or straps.Type: GrantFiled: July 15, 2022Date of Patent: January 9, 2024Inventors: Paul Kladitis, Brian Rice, Lingchuan Li
-
Publication number: 20230016467Abstract: A process for making a carbon nanotube structure includes forming a composite by depositing or growing carbon nanotubes onto a metal substrate, and infusing the carbon nanotubes. In other aspects, a method of making a wire, includes coating carbon nanotubes on a wire, and electroplating the carbon nanotubes. In still other aspects, a method of making a conductor includes growing or depositing vertically aligned carbon nanotubes on a sheet. Yet still, a method of making a cable includes forming multiple composite wires, each composite wire formed by depositing or growing carbon nanotubes onto a metal substrate, and performing a metal infusion of the carbon nanotubes. The method also comprises combining multiple finished composite wires or objects to make large cables or straps.Type: ApplicationFiled: July 15, 2022Publication date: January 19, 2023Inventors: Paul Kladitis, Brian Rice, Lingchuan Li
-
Patent number: 10570541Abstract: Carbon nanotube threads are coated with a coating solution such as dimethylformamide (DMF), ethylene glycol (EG), polyethylene glycol (PEG), PEG200 (PEG with an average molecular weight of approximately 200 grams per mole (g/mol)), PEG400 (PEG with an average molecular weight of approximately 400 g/mol), aminopropyl terminated polydimethylsiloxane (DMS 100 cP),polymide, poly(methylhydrosiloxane), polyalkylene glycol, (3-aminopropyl)trimethoxysilane, hydride functional siloxane O resin, platinum (0) -1,3-divinyl-1,1,3,3-tetramethyl-disiloxane, moisture in air, acetic acid, water, poly(dimethylsiloxane) hydroxy terminated, (3-glycidyloxypropyl)-trimethoxysilane or a combination thereof. The coated carbon nanotubes may be used to stitch in a Z-direction into a composite such as a polymer prepreg to strengthen the composite. The stitching may occur using a sewing machine.Type: GrantFiled: June 28, 2017Date of Patent: February 25, 2020Assignees: University of Dayton, Nanocomp Technologies, Inc.Inventors: Paul Kladitis, Lingchuan Li, Brian Rice, Zongwu Bai, David Gailus
-
Publication number: 20170370039Abstract: Carbon nanotube threads are coated with a coating solution such as dimethylformamide (DMF), ethylene glycol (EG), polyethylene glycol (PEG), PEG200 (PEG with a average molecular weight of approximately 200 grams per mole (g/mol)), PEG400 (PEG with a average molecular weight of approximately 400 g/mol), dimethyl sulfide (DMS 100 cP), HP1632, poly(methylhydrosiloxane), polyalkylene glycol, (3-aminopropyl)trimethoxysilane, hydride functional siloxane 0 resin, platinum (0) -1,3-divinyl-1,1,3,3-tetramethyl-disiloxane, moisture in air, acetic acid, water, poly(dimethylsiloxane) hydroxy terminated, (3-glycidyloxypropyl)-trimethoxysilane or a combination thereof. The coated carbon nanotubes may be used to stitch in a Z-direction into a composite such as a polymer prepreg to strengthen the composite. The stitching may occur using a sewing machine.Type: ApplicationFiled: June 28, 2017Publication date: December 28, 2017Inventors: Paul Kladitis, Lingchuan Li, Brian Rice, Zongwu Bai, David Gailus
-
Patent number: 9676627Abstract: Methods of growing boron nitride nanotubes and silicon nanowires on carbon substrates formed from carbon fibers. The methods include applying a catalyst solution to the carbon substrate and heating the catalyst coated carbon substrate in a furnace in the presence of chemical vapor deposition reactive species to form the boron nitride nanotubes and silicon nanowires. A mixture of a first vapor deposition precursor formed from boric acid and urea and a second vapor deposition precursor formed from iron nitrate, magnesium nitrate, and D-sorbitol are provided to the furnace to form boron nitride nanotubes. A silicon source including SiH4 is provided to the furnace at atmospheric pressure to form silicon nanowires.Type: GrantFiled: May 14, 2015Date of Patent: June 13, 2017Assignee: University of DaytonInventor: Lingchuan Li
-
Publication number: 20150329360Abstract: Methods of growing boron nitride nanotubes and silicon nanowires on carbon substrates formed from carbon fibers. The methods include applying a catalyst solution to the carbon substrate and heating the catalyst coated carbon substrate in a furnace in the presence of chemical vapor deposition reactive species to form the boron nitride nanotubes and silicon nanowires. A mixture of a first vapor deposition precursor formed from boric acid and urea and a second vapor deposition precursor formed from iron nitrate, magnesium nitrate, and D-sorbitol are provided to the furnace to form boron nitride nanotubes. A silicon source including SiH4 is provided to the furnace at atmospheric pressure to form silicon nanowires.Type: ApplicationFiled: May 14, 2015Publication date: November 19, 2015Inventor: Lingchuan Li
-
Patent number: 9136267Abstract: An integrated circuit chip includes CMOS integrated circuit cells arranged in a semiconductor layer, each including first and second active regions, having first and second polarities, respectively. A first power rail is routed along boundaries of the CMOS integrated circuit cells proximate to the first active regions. A second power rail is routed over second active regions. Global routing channels are routed over the second active regions such that the second power rail is disposed between the global routing channels and the first power rail. The global routing channels are coupled between the CMOS integrated circuit cells to couple the CMOS integrated circuit cells together globally in the integrated circuit chip.Type: GrantFiled: February 7, 2014Date of Patent: September 15, 2015Assignee: OmniVision Technologies, Inc.Inventors: Tianjia Sun, Lingchuan Li, Shumin Wu
-
Publication number: 20150228650Abstract: An integrated circuit chip includes CMOS integrated circuit cells arranged in a semiconductor layer, each including first and second active regions, having first and second polarities, respectively. A first power rail is routed along boundaries of the CMOS integrated circuit cells proximate to the first active regions. A second power rail is routed over second active regions. Global routing channels are routed over the second active regions such that the second power rail is disposed between the global routing channels and the first power rail. The global routing channels are coupled between the CMOS integrated circuit cells to couple the CMOS integrated circuit cells together globally in the integrated circuit chip.Type: ApplicationFiled: February 7, 2014Publication date: August 13, 2015Applicant: OMNIVISION TECHNOLOGIES, INC.Inventors: Tianjia Sun, Lingchuan Li, Shumin Wu
-
Patent number: 8895105Abstract: A method of growing carbon nanomaterials on a substrate wherein the substrate is exposed to an oxidizing gas; a seed material is deposited on the substrate to form a receptor for a catalyst on the surface of said substrate; a catalyst is deposited on the seed material by exposing the receptor on the surface of the substrate to a vapor of the catalyst; and substrate is subjected to chemical vapor deposition in a carbon containing gas to grow carbon nanomaterial on the substrate.Type: GrantFiled: June 12, 2012Date of Patent: November 25, 2014Assignee: University of DaytonInventors: Khalid Lafdi, Lingchuan Li, Matthew C. Boehle, Alexandre Lagounov
-
Publication number: 20120315467Abstract: A method of growing carbon nanomaterials on a substrate wherein the substrate is exposed to an oxidizing gas; a seed material is deposited on the substrate to form a receptor for a catalyst on the surface of said substrate; a catalyst is deposited on the seed material by exposing the receptor on the surface of the substrate to a vapor of the catalyst; and substrate is subjected to chemical vapor deposition in a carbon containing gas to grow carbon nanomaterial on the substrate.Type: ApplicationFiled: June 12, 2012Publication date: December 13, 2012Applicant: UNIVERSITY OF DAYTONInventors: Khalid Lafdi, Lingchuan Li, Matthew C. Boehle, Alexandre Lagounov
-
Publication number: 20090186214Abstract: A method of growing carbon nanomaterials such as carbon ?anotubes, carbon nanofibers, and carbon whiskers on a variety of substrates is provided which includes exposing at least a portion of the substrate surface to an oxidizing gas, followed by forming catalysts on the substrate surface, either by immersing the carbon substrate in a catalyst solution or by electrodeposition. The treated substrate is then subjected to chemical vapor deposition to facilitate the growth of carbon nanomaterials on the surface thereof. The carbon nanomaterials may be grown on a variety of substrates including carbon substrates, graphite, metal, metal alloys, intermetallic compounds, glass, fiberglass, and ceramic substrates.Type: ApplicationFiled: May 15, 2007Publication date: July 23, 2009Applicant: UNIVERSITY OF DAYTONInventors: Khalid Lafdi, Lingchuan Li