Patents by Inventor Lingjia Tang

Lingjia Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876731
    Abstract: Systems and methods for mapping applications onto system resource of a computing platform are discussed. The computing platform may receive, using control circuitry, a request to run a plurality of applications on a computing platform having a plurality of system resources. The computing platform may determine a plurality of mapping configurations for the plurality of applications onto the plurality of system resources. The computing platform may execute the plurality of applications with each of the plurality of mapping configurations. The computing platform may determine at least one performance metric based on the executed plurality of applications for each of the plurality of mapping configurations. The computing platform may select a selected mapping configuration among the plurality of mapping configurations based on at least one determined performance metric.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: January 16, 2024
    Assignee: Google LLC
    Inventors: Lingjia Tang, Jason Mars, Robert Hundt
  • Patent number: 11481597
    Abstract: A system and method of configuring a graphical control structure for controlling a machine learning-based automated dialogue system includes configuring a root dialogue classification node that performs a dialogue intent classification task for utterance data input; configuring a plurality of distinct dialogue state classification nodes that are arranged downstream of the root dialogue classification node; configuring a graphical edge connection between the root dialogue classification node and the plurality of distinct state dialogue classification nodes that graphically connects each of the plurality of distinct state dialogue classification nodes to the root dialogue classification node, wherein (i) the root dialogue classification node, (ii) the plurality of distinct classification nodes, (iii) and the transition edge connections define a graphical dialogue system control structure that governs an active dialogue between a user and the machine learning-based automated dialogue system.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: October 25, 2022
    Assignee: Clinc, Inc.
    Inventors: Parker Hill, Jason Mars, Lingjia Tang, Michael A. Laurenzano, Johann Hauswald, Yiping Kang, Yunqi Zhang
  • Publication number: 20210256345
    Abstract: Systems and methods for implementing an artificially intelligent virtual assistant includes collecting a user query; using a competency classification machine learning model to generate a competency label for the user query; using a slot identification machine learning model to segment the text of the query and label each of the slots of the query; generating a slot value for each of the slots of the query; generating a handler for each of the slot values; and using the slot values to: identify an external data source relevant to the user query, fetch user data from the external data source, and apply one or more operations to the query to generate response data; and using the response data, to generate a response to the user query.
    Type: Application
    Filed: April 15, 2021
    Publication date: August 19, 2021
    Inventors: Jason Mars, Lingjia Tang, Michael Laurenzano, Johann Hauswald
  • Publication number: 20210241066
    Abstract: A system and method of configuring a graphical control structure for controlling a machine learning-based automated dialogue system includes configuring a root dialogue classification node that performs a dialogue intent classification task for utterance data input; configuring a plurality of distinct dialogue state classification nodes that are arranged downstream of the root dialogue classification node; configuring a graphical edge connection between the root dialogue classification node and the plurality of distinct state dialogue classification nodes that graphically connects each of the plurality of distinct state dialogue classification nodes to the root dialogue classification node, wherein (i) the root dialogue classification node, (ii) the plurality of distinct classification nodes, (iii) and the transition edge connections define a graphical dialogue system control structure that governs an active dialogue between a user and the machine learning-based automated dialogue system.
    Type: Application
    Filed: January 15, 2021
    Publication date: August 5, 2021
    Inventors: Parker Hill, Jason Mars, Lingjia Tang, Michael A. Laurenzano, Johann Hauswald, Yiping Kang, Yunqi Zhang
  • Publication number: 20210193127
    Abstract: Systems and methods for building a response for a machine learning-based dialogue agent includes implementing machine learning classifiers that predict slot segments of the utterance data based on an input of the utterance data; predict a slot classification label for each of the slot segments of the utterance data; computing a semantic vector value for each of the slot segments of the utterance data; assessing the semantic vector value of the slot segments of the utterance data against a multi-dimensional vector space of structured categories of dialogue, wherein the assessment includes: for each of a distinct structured categories of dialogue computing a similarity metric value; selecting one structured category of dialogue from the distinct structured categories of dialogue based on the computed similarity metric value for each of distinct structured categories; and producing a response to the utterance data.
    Type: Application
    Filed: January 26, 2021
    Publication date: June 24, 2021
    Inventors: Yiping Kang, Michael A. Laurenzano, Johann Hauswald, Lingjia Tang, Jason Mars
  • Patent number: 11042800
    Abstract: Systems and methods for implementing an artificially intelligent virtual assistant includes collecting a user query; using a competency classification machine learning model to generate a competency label for the user query; using a slot identification machine learning model to segment the text of the query and label each of the slots of the query; generating a slot value for each of the slots of the query; generating a handler for each of the slot values; and using the slot values to: identify an external data source relevant to the user query, fetch user data from the external data source, and apply one or more operations to the query to generate response data; and using the response data, to generate a response to the user query.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: June 22, 2021
    Assignee: Cline, Inc.
    Inventors: Jason Mars, Lingjia Tang, Michael Laurenzano, Johann Hauswald, Parker Hill
  • Publication number: 20210166138
    Abstract: Systems and methods for automatically detecting annotation discrepancies in annotated training data samples and repairing the annotated training data samples for a machine learning-based automated dialogue system include evaluating a corpus of a plurality of distinct training data samples; identifying one or more of a slot span defect and a slot label defect of a target annotated slot span of a target training data sample of the corpus based on the evaluation; and automatically correcting one or more annotations of the target annotated slot span based on the identified one or more of the slot span defect and the slot label defect.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 3, 2021
    Inventors: Stefan Larson, Anish Mahendran, Parker Hill, Jonathan K. Kummerfeld, Michael A. Laurenzano, Lingjia Tang, Jason Mars
  • Patent number: 11010656
    Abstract: Systems and methods for implementing an artificially intelligent virtual assistant includes collecting a user query; using a competency classification machine learning model to generate a competency label for the user query; using a slot identification machine learning model to segment the text of the query and label each of the slots of the query; generating a slot value for each of the slots of the query; generating a handler for each of the slot values; and using the slot values to: identify an external data source relevant to the user query, fetch user data from the external data source, and apply one or more operations to the query to generate response data; and using the response data, to generate a response to the user query.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 18, 2021
    Assignee: Clinc, Inc.
    Inventors: Jason Mars, Lingjia Tang, Michael Laurenzano, Johann Hauswald
  • Patent number: 10936936
    Abstract: A system and method of configuring a graphical control structure for controlling a machine learning-based automated dialogue system includes configuring a root dialogue classification node that performs a dialogue intent classification task for utterance data input; configuring a plurality of distinct dialogue state classification nodes that are arranged downstream of the root dialogue classification node; configuring a graphical edge connection between the root dialogue classification node and the plurality of distinct state dialogue classification nodes that graphically connects each of the plurality of distinct state dialogue classification nodes to the root dialogue classification node, wherein (i) the root dialogue classification node, (ii) the plurality of distinct classification nodes, (iii) and the transition edge connections define a graphical dialogue system control structure that governs an active dialogue between a user and the machine learning-based automated dialogue system.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 2, 2021
    Assignee: Clinc, Inc.
    Inventors: Parker Hill, Jason Mars, Lingjia Tang, Michael A. Laurenzano, Johann Hauswald, Yiping Kang, Yunqi Zhang
  • Patent number: 10937417
    Abstract: Systems and methods for building a response for a machine learning-based dialogue agent includes implementing machine learning classifiers that predict slot segments of the utterance data based on an input of the utterance data; predict a slot classification label for each of the slot segments of the utterance data; computing a semantic vector value for each of the slot segments of the utterance data; assessing the semantic vector value of the slot segments of the utterance data against a multi-dimensional vector space of structured categories of dialogue, wherein the assessment includes: for each of a distinct structured categories of dialogue computing a similarity metric value; selecting one structured category of dialogue from the distinct structured categories of dialogue based on the computed similarity metric value for each of distinct structured categories; and producing a response to the utterance data.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 2, 2021
    Assignee: Clinc, Inc.
    Inventors: Yiping Kang, Michael A. Laurenzano, Johann Hauswald, Lingjia Tang, Jason Mars
  • Patent number: 10929761
    Abstract: Systems and methods for automatically detecting annotation discrepancies in annotated training data samples and repairing the annotated training data samples for a machine learning-based automated dialogue system include evaluating a corpus of a plurality of distinct training data samples; identifying one or more of a slot span defect and a slot label defect of a target annotated slot span of a target training data sample of the corpus based on the evaluation; and automatically correcting one or more annotations of the target annotated slot span based on the identified one or more of the slot span defect and the slot label defect.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 23, 2021
    Assignee: Clinic, Inc.
    Inventors: Stefan Larson, Anish Mahendran, Parker Hill, Jonathan K. Kummerfeld, Michael A. Laurenzano, Lingjia Tang, Jason Mars
  • Publication number: 20210004539
    Abstract: Systems and methods for constructing an artificially diverse corpus of training data includes evaluating a corpus of utterance-based training data samples, identifying a slot replacement candidate; deriving distinct skeleton utterances that include the slot replacement candidate, wherein deriving the distinct skeleton utterances includes replacing slots of each of the plurality of distinct utterance training samples with one of a special token and proper slot classification labels; selecting a subset of the distinct skeleton utterances; converting each of the distinct skeleton utterances of the subset back to distinct utterance training samples while still maintaining the special token at a position of the slot replacement candidate; altering a percentage of the distinct utterance training samples with a distinct randomly-generated slot token value at the position of the slot replacement candidate; and constructing the artificially diverse corpus of training samples based on a collection of the percentage of
    Type: Application
    Filed: September 1, 2020
    Publication date: January 7, 2021
    Inventors: Andrew Lee, Stefan Larson, Christopher Clarke, Kevin Leach, Jonathan K. Kummerfeld, Parker Hill, Johann Hauswald, Michael A. Laurenzano, Lingjia Tang, Jason Mars
  • Publication number: 20200401914
    Abstract: Systems and methods for automatically detecting annotation discrepancies in annotated training data samples and repairing the annotated training data samples for a machine learning-based automated dialogue system include evaluating a corpus of a plurality of distinct training data samples; identifying one or more of a slot span defect and a slot label defect of a target annotated slot span of a target training data sample of the corpus based on the evaluation; and automatically correcting one or more annotations of the target annotated slot span based on the identified one or more of the slot span defect and the slot label defect.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 24, 2020
    Inventors: Stefan Larson, Anish Mahendran, Parker Hill, Jonathan K. Kummerfeld, Michael A. Laurenzano, Lingjia Tang, Jason Mars
  • Publication number: 20200380964
    Abstract: Systems and methods for building a response for a machine learning-based dialogue agent includes implementing machine learning classifiers that predict slot segments of the utterance data based on an input of the utterance data; predict a slot classification label for each of the slot segments of the utterance data; computing a semantic vector value for each of the slot segments of the utterance data; assessing the semantic vector value of the slot segments of the utterance data against a multi-dimensional vector space of structured categories of dialogue, wherein the assessment includes: for each of a distinct structured categories of dialogue computing a similarity metric value; selecting one structured category of dialogue from the distinct structured categories of dialogue based on the computed similarity metric value for each of distinct structured categories; and producing a response to the utterance data.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 3, 2020
    Inventors: Yiping Kang, Michael A. Laurenzano, Johann Hauswald, Lingjia Tang, Jason Mars
  • Publication number: 20200382443
    Abstract: Systems and methods for mapping applications onto system resource of a computing platform are discussed. The computing platform may receive, using control circuitry, a request to run a plurality of applications on a computing platform having a plurality of system resources. The computing platform may determine a plurality of mapping configurations for the plurality of applications onto the plurality of system resources. The computing platform may execute the plurality of applications with each of the plurality of mapping configurations. The computing platform may determine at least one performance metric based on the executed plurality of applications for each of the plurality of mapping configurations. The computing platform may select a selected mapping configuration among the plurality of mapping configurations based on at least one determined performance metric.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Google LLC
    Inventors: Lingjia Tang, Jason Mars, Robert Hundt
  • Publication number: 20200364410
    Abstract: A system and method for intelligently configuring a machine learning-based dialogue system includes a conversational deficiency assessment of a target dialog system, wherein implementing the conversational deficiency assessment includes: (i) identifying distinct corpora of mishandled utterances based on an assessment of the distinct corpora of dialogue data; (ii) identifying candidate corpus of mishandled utterances from the distinct corpora of mishandled utterances as suitable candidates for building new dialogue competencies for the target dialogue system if candidate metrics of the candidate corpus of mishandled utterances satisfy a candidate threshold; building the new dialogue competencies for the target dialogue system for each of the candidate corpus of mishandled utterances having candidate metrics that satisfy the candidate threshold; and configuring a dialogue system control structure for the target dialogue system based on the new dialogue competencies, wherein the dialogue system control structure
    Type: Application
    Filed: July 30, 2020
    Publication date: November 19, 2020
    Inventors: Jason Mars, Lingjia Tang, Michael A. Laurenzano, Johann Hauswald, Parker Hill, Yiping Kang, Yunqi Zhang
  • Patent number: 10824818
    Abstract: Systems and methods for synthesizing training data for multi-intent utterance segmentation include identifying a first corpus of utterances comprising a plurality of distinct single-intent in-domain utterances; identifying a second corpus of utterances comprising a plurality of distinct single-intent out-of-domain utterances; identifying a third corpus comprising a plurality of distinct conjunction terms; forming a multi-intent training corpus comprising synthetic multi-intent utterances, wherein forming each distinct multi-intent utterance includes: selecting a first distinct in-domain utterance from the first corpus of utterances; probabilistically selecting one of a first out-of-domain utterance from the second corpus and a second in-domain utterance from the first corpus; probabilistically selecting or not selecting a distinct conjunction term from the third corpus; and forming a synthetic multi-intent utterance including appending the first in-domain utterance with one of the first out-of-domain utteranc
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: November 3, 2020
    Assignee: Clinc, Inc.
    Inventors: Joseph Peper, Parker Hill, Kevin Leach, Sean Stapleton, Jonathan K. Kummerfeld, Johann Hauswald, Michael Laurenzano, Lingjia Tang, Jason Mars
  • Patent number: 10796104
    Abstract: Systems and methods for constructing an artificially diverse corpus of training data includes evaluating a corpus of utterance-based training data samples, identifying a slot replacement candidate; deriving distinct skeleton utterances that include the slot replacement candidate, wherein deriving the distinct skeleton utterances includes replacing slots of each of the plurality of distinct utterance training samples with one of a special token and proper slot classification labels; selecting a subset of the distinct skeleton utterances; converting each of the distinct skeleton utterances of the subset back to distinct utterance training samples while still maintaining the special token at a position of the slot replacement candidate; altering a percentage of the distinct utterance training samples with a distinct randomly-generated slot token value at the position of the slot replacement candidate; and constructing the artificially diverse corpus of training samples based on a collection of the percentage of
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: October 6, 2020
    Assignee: Clinc, Inc.
    Inventors: Andrew Lee, Stefan Larson, Christopher Clarke, Kevin Leach, Jonathan K. Kummerfeld, Parker Hill, Johann Hauswald, Michael A. Laurenzano, Lingjia Tang, Jason Mars
  • Patent number: 10778605
    Abstract: Systems and methods for mapping applications onto system resource of a computing platform are discussed. The computing platform may receive, using control circuitry, a request to run a plurality of applications on a computing platform having a plurality of system resources. The computing platform may determine a plurality of mapping configurations for the plurality of applications onto the plurality of system resources. The computing platform may execute the plurality of applications with each of the plurality of mapping configurations. The computing platform may determine at least one performance metric based on the executed plurality of applications for each of the plurality of mapping configurations. The computing platform may select a selected mapping configuration among the plurality of mapping configurations based on at least one determined performance metric.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: September 15, 2020
    Assignee: Google LLC
    Inventors: Lingjia Tang, Jason Mars, Robert Hundt
  • Patent number: 10769384
    Abstract: A system and method for intelligently configuring a machine learning-based dialogue system includes a conversational deficiency assessment of a target dialog system, wherein implementing the conversational deficiency assessment includes: (i) identifying distinct corpora of mishandled utterances based on an assessment of the distinct corpora of dialogue data; (ii) identifying candidate corpus of mishandled utterances from the distinct corpora of mishandled utterances as suitable candidates for building new dialogue competencies for the target dialogue system if candidate metrics of the candidate corpus of mishandled utterances satisfy a candidate threshold; building the new dialogue competencies for the target dialogue system for each of the candidate corpus of mishandled utterances having candidate metrics that satisfy the candidate threshold; and configuring a dialogue system control structure for the target dialogue system based on the new dialogue competencies, wherein the dialogue system control structure
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: September 8, 2020
    Assignee: Clinc, Inc.
    Inventors: Jason Mars, Lingjia Tang, Michael A. Laurenzano, Johann Hauswald, Parker Hill, Yiping Kang, Yunqi Zhang