Patents by Inventor Lingyi Zheng

Lingyi Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366883
    Abstract: The present invention provides an immunodiagnostic test device for the detection of anti-dengue virus antibodies comprising a first dengue antigen and a second dengue antigen, wherein the first dengue antigen comprises a polypeptide having at least 90% sequence identity to SEQ ID NO. 1 and the second dengue antigen comprises a polypeptide having the sequence of SEQ ID NO. 2 or a polypeptide having a sequence which has at least 1 and no more than 4 amino acid substitutions with respect to the sequence of SEQ ID NO. 2.
    Type: Application
    Filed: April 5, 2023
    Publication date: November 16, 2023
    Inventors: Yasemin Ataman-Onal, Matthew Bonaparte, Catherine Chen, Vasco Liberal, Qilin Pan, Stephen Savarino, Wushan Yin, Lingyi Zheng
  • Publication number: 20070170552
    Abstract: A method for forming silicon nitride films on semiconductor devices is provided. In one embodiment of the method, a silicon-comprising substrate is first exposed to a mixture of dichlorosilane (DCS) and a nitrogen-comprising gas to deposit a thin silicon nitride seeding layer on the surface, and then exposed to a mixture of silicon tetrachloride (TCS) and a nitrogen comprising gas to deposit a TCS silicon nitride layer on the DCS seeding layer. In another embodiment, the method involves first nitridizing the surface of the silicon-comprising substrate prior to forming the DCS nitride seeding layer and the TCS nitride layer. The method achieves a TCS nitride layer having a sufficient thickness to eliminate bubbling and punch-through problems and provide high electrical performance regardless of the substrate type. Also provided are methods of forming a capacitor, and the resulting capacitor structures.
    Type: Application
    Filed: February 28, 2007
    Publication date: July 26, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Er-Xuan Ping
  • Publication number: 20070152259
    Abstract: A container capacitor and method of forming the container capacitor are provided. The container capacitor comprises a lower electrode fabricated by forming a layer of doped polysilicon within a container in an insulative layer disposed on a substrate; forming a barrier layer over the polysilicon layer within the container; removing the insulative layer to expose the polysilicon layer outside the container; nitridizing the exposed polysilicon layer at a low temperature, preferably by remote plasma nitridation; removing the barrier layer to expose the inner surface of the polysilicon layer within the container; and forming HSG polysilicon over the inner surface of the polysilicon layer. The capacitor can be completed by forming a dielectric layer over the lower electrode, and an upper electrode over the dielectric layer. The cup-shaped bottom electrode formed within the container defines an interior surface comprising HSG polysilicon, and an exterior surface comprising smooth polysilicon.
    Type: Application
    Filed: February 28, 2007
    Publication date: July 5, 2007
    Applicant: Micron Technology, Inc.
    Inventor: Lingyi Zheng
  • Publication number: 20060244092
    Abstract: The invention encompasses methods of forming metal nitride proximate dielectric materials. The metal nitride comprises two portions, with one of the portions being nearer the dielectric material than the other. The portion of the metal nitride nearest the dielectric material is formed from a non-halogenated metal-containing precursor, and the portion of the metal nitride further from the dielectric material is formed from a halogenated metal-containing precursor. The methodology of the present invention can be utilized for forming capacitor constructions, with the portion of the metal nitride formed from the halogenated metal-containing precursor being incorporated into a capacitor electrode.
    Type: Application
    Filed: June 28, 2006
    Publication date: November 2, 2006
    Inventors: Lingyi Zheng, Er-Xuan Ping
  • Publication number: 20060213440
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 28, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20060211239
    Abstract: Methods are provided for robust and cost effective techniques to fabricate a semiconductor device having double-sided hemispherical silicon grain (HSG) electrodes for container capacitors. In an embodiment, this is accomplished by forming a layer of hemispherical silicon grain (HSG) polysilicon over interior surfaces of a polysilicon layer of a container formed in a substrate. The top portion of the polysilicon layer may be nitridized.
    Type: Application
    Filed: April 26, 2006
    Publication date: September 21, 2006
    Inventor: Lingyi Zheng
  • Publication number: 20060205187
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: May 9, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20060204649
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 14, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Kevin Beaman, Trung Doan, Lyle Breiner, Ronald Weimer, Er-Xuan Ping, David Kubista, Cem Basceri, Lingyi Zheng
  • Publication number: 20060196538
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 2, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: David Kubista, Trung Doan, Lyle Breiner, Ronald Weimer, Kevin Beaman, Er-Xuan Ping, Lingyi Zheng, Cem Basceri
  • Publication number: 20060198955
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Ronald Weimer, David Kubista, Kevin Beaman, Cem Basceri
  • Publication number: 20060199331
    Abstract: Methods are provided for robust and cost effective techniques to fabricate a semiconductor device having double-sided hemispherical silicon grain (HSG) electrodes for container capacitors. In an embodiment, this is accomplished by forming a layer of hemispherical silicon grain (HSG) polysilicon over interior surfaces of a polysilicon layer of a container formed in a substrate. An oxide cap may be formed on the top portion of the container.
    Type: Application
    Filed: April 26, 2006
    Publication date: September 7, 2006
    Inventor: Lingyi Zheng
  • Publication number: 20060121689
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced toga second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: January 6, 2006
    Publication date: June 8, 2006
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Publication number: 20060115957
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: January 6, 2006
    Publication date: June 1, 2006
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Publication number: 20060057800
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: August 17, 2005
    Publication date: March 16, 2006
    Inventors: Trung Doan, Lyle Breiner, Er-Xuan Ping, Lingyi Zheng
  • Publication number: 20060009019
    Abstract: The invention encompasses methods of forming metal nitride proximate dielectric materials. The metal nitride comprises two portions, with one of the portions being nearer the dielectric material than the other. The portion of the metal nitride nearest the dielectric material is formed from a non-halogenated metal-containing precursor, and the portion of the metal nitride further from the dielectric material is formed from a halogenated metal-containing precursor. The methodology of the present invention can be utilized for forming capacitor constructions, with the portion of the metal nitride formed from the halogenated metal-containing precursor being incorporated into a capacitor electrode.
    Type: Application
    Filed: July 8, 2004
    Publication date: January 12, 2006
    Inventors: Lingyi Zheng, Er-Xuan Ping
  • Publication number: 20050164466
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50?.
    Type: Application
    Filed: January 28, 2004
    Publication date: July 28, 2005
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, Cem Basceri, David Kubista
  • Publication number: 20050126489
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 16, 2005
    Inventors: Kevin Beaman, Trung Doan, Lyle Breiner, Ronald Weimer, Er-Xuan Ping, David Kubista, Cem Basceri, Lingyi Zheng
  • Publication number: 20050081786
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 21, 2005
    Inventors: David Kubista, Trung Doan, Lyle Breiner, Ronald Weimer, Kevin Beaman, Er-Xuan Ping, Lingyi Zheng, Cem Basceri
  • Publication number: 20050059261
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 17, 2005
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Publication number: 20050045102
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 3, 2005
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri