Patents by Inventor Linhan Lin

Linhan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240410079
    Abstract: The present disclosure provides a 3D structured inorganic nanoscale product and a printing method and application thereof. The printing method includes the following steps: (1) mixing an inorganic nanocrystal and a photosensitive crosslinkable compound in a solvent to obtain a printing solution; wherein the inorganic nanocrystal has a ligand containing a carbon-hydrogen bond on the surface thereof; (2) obtaining a 3D printed product using laser 3D printing; wherein the photosensitive crosslinkable compound is a nitrene-based photosensitive crosslinking agent and/or a carbene-based photosensitive crosslinking agent. The method achieves the printing of semiconductor materials, metals, and metal oxide materials with submicron precision and any complex 3D structures through light-triggered chemical covalent bonding of ligands. The nanomaterials in the printed 3D structures retain their inherent morphology, and electrical and optical properties.
    Type: Application
    Filed: May 30, 2024
    Publication date: December 12, 2024
    Inventors: Hao ZHANG, Jinghong LI, Hongbo SUN, Linhan LIN, Fu LI, Shaofeng LIU, Wangyu LIU, Zhengwei HOU
  • Patent number: 11448965
    Abstract: Disclosed herein are methods for patterning two-dimensional atomic layer materials, the methods comprising: illuminating a first location of an optothermal substrate with electromagnetic radiation, wherein the optothermal substrate converts at least a portion of the electromagnetic radiation into thermal energy, and wherein the optothermal substrate is in thermal contact with a two-dimensional atomic layer material; thereby: generating an ablation region at a location of the two-dimensional atomic layer material proximate to the first location of the optothermal substrate, wherein at least a portion of the ablation region has a temperature sufficient to ablate at least a portion of the two-dimensional atomic layer material within the ablation region, thereby patterning the two-dimensional atomic layer material. Also disclosed herein are systems for performing the methods described herein, patterned two-dimensional atomic layer materials made by the methods described herein and methods of use thereof.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: September 20, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Yuebing Zheng, Linhan Lin, Jingang Li
  • Publication number: 20210311397
    Abstract: Disclosed herein are methods for patterning two-dimensional atomic layer materials, the methods comprising: illuminating a first location of an optothermal substrate with electromagnetic radiation, wherein the optothermal substrate converts at least a portion of the electromagnetic radiation into thermal energy, and wherein the optothermal substrate is in thermal contact with a two-dimensional atomic layer material; thereby: generating an ablation region at a location of the two-dimensional atomic layer material proximate to the first location of the optothermal substrate, wherein at least a portion of the ablation region has a temperature sufficient to ablate at least a portion of the two-dimensional atomic layer material within the ablation region, thereby patterning the two-dimensional atomic layer material. Also disclosed herein are systems for performing the methods described herein, patterned two-dimensional atomic layer materials made by the methods described herein and methods of use thereof.
    Type: Application
    Filed: July 22, 2019
    Publication date: October 7, 2021
    Inventors: Yuebing ZHENG, Linhan LIN, Jingang LI
  • Patent number: 11060976
    Abstract: Disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation, wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate. The plasmonic substrate can be in thermal contact with a liquid sample comprising a plurality of metal particles and a surfactant, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the plasmonic substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping at least a portion of the plurality of metal particles within the confinement region.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: July 13, 2021
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Patent number: 10620121
    Abstract: Disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation, wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate. The plasmonic substrate can be in thermal contact with a liquid sample comprising a plurality of particles, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the plasmonic substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping at least a portion of the plurality of particles within the confinement region.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: April 14, 2020
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Patent number: 10603685
    Abstract: Disclosed herein are methods comprising illuminating a first location of an optothermal substrate with electromagnetic radiation, wherein the optothermal substrate converts at least a portion of the electromagnetic radiation into thermal energy. The optothermal substrate can be in thermal contact with a liquid sample comprising a plurality of capped particles and a plurality of surfactant micelles, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the optothermal substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping and depositing at least a portion of the plurality of capped particles.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 31, 2020
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Patent number: 10371892
    Abstract: Disclosed herein are nanostructured photonic materials, methods of making and methods of use thereof, and systems including the nanostructured photonic materials. The nanostructured photonic materials comprise a substrate having a first surface; an array comprising a plurality of spaced-apart plasmonic particles disposed on the first surface of the substrate; and a waveguide layer disposed on the array and the first surface, wherein the waveguide layer: is optically coupled to the array, comprises a photochrome dispersed within a matrix material, and has an average thickness defining a hybrid plasmon waveguide mode; wherein the photochrome exhibits a first optical state and a second optical state; and wherein the second optical state of the photochrome at least partially overlaps with the hybrid plasmon waveguide mode.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 6, 2019
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yuebing Zheng, Linhan Lin, Mingsong Wang
  • Publication number: 20190195805
    Abstract: Disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation, wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate. The plasmonic substrate can be in thermal contact with a liquid sample comprising a plurality of metal particles and a surfactant, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the plasmonic substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping at least a portion of the plurality of metal particles within the confinement region.
    Type: Application
    Filed: September 8, 2017
    Publication date: June 27, 2019
    Inventors: Yuebing ZHENG, Linhan LIN, Xiaolei PENG
  • Patent number: 10281398
    Abstract: Disclosed herein are lithographic systems and methods. For example, disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation; wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate; and wherein the plasmonic substrate is in thermal contact with a liquid sample comprising a plurality of particles; thereby: generating a bubble at a location in the liquid sample proximate to the first location of the plasmonic substrate, the bubble having a gas-liquid interface with the liquid sample; trapping at least a portion of the plurality of particles at the gas-liquid interface of the bubble and the liquid sample; and depositing at least a portion of the plurality of particles on the plasmonic substrate at the first location.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: May 7, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Publication number: 20190113453
    Abstract: Disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation, wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate. The plasmonic substrate can be in thermal contact with a liquid sample comprising a plurality of particles, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the plasmonic substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping at least a portion of the plurality of particles within the confinement region.
    Type: Application
    Filed: April 19, 2017
    Publication date: April 18, 2019
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Publication number: 20180348128
    Abstract: Disclosed herein are lithographic systems and methods. For example, disclosed herein are methods comprising illuminating a first location of a plasmonic substrate with electromagnetic radiation; wherein the electromagnetic radiation comprises a wavelength that overlaps with at least a portion of the plasmon resonance energy of the plasmonic substrate; and wherein the plasmonic substrate is in thermal contact with a liquid sample comprising a plurality of particles; thereby: generating a bubble at a location in the liquid sample proximate to the first location of the plasmonic substrate, the bubble having a gas-liquid interface with the liquid sample; trapping at least a portion of the plurality of particles at the gas-liquid interface of the bubble and the liquid sample; and depositing at least a portion of the plurality of particles on the plasmonic substrate at the first location.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 6, 2018
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng
  • Publication number: 20180275343
    Abstract: Disclosed herein are nanostructured photonic materials, methods of making and methods of use thereof, and systems including the nanostructured photonic materials. The nanostructured photonic materials comprise a substrate having a first surface; an array comprising a plurality of spaced-apart plasmonic particles disposed on the first surface of the substrate; and a waveguide layer disposed on the array and the first surface, wherein the waveguide layer: is optically coupled to the array, comprises a photochrome dispersed within a matrix material, and has an average thickness defining a hybrid plasmon waveguide mode; wherein the photochrome exhibits a first optical state and a second optical state; and wherein the second optical state of the photochrome at least partially overlaps with the hybrid plasmon waveguide mode.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 27, 2018
    Inventors: Yuebing Zheng, Linhan Lin, Mingsong Wang
  • Publication number: 20180236486
    Abstract: Disclosed herein are methods comprising illuminating a first location of an optothermal substrate with electromagnetic radiation, wherein the optothermal substrate converts at least a portion of the electromagnetic radiation into thermal energy. The optothermal substrate can be in thermal contact with a liquid sample comprising a plurality of capped particles and a plurality of surfactant micelles, the liquid sample having a first temperature. The methods can further comprise generating a confinement region at a location in the liquid sample proximate to the first location of the optothermal substrate, wherein at least a portion of the confinement region has a second temperature that is greater than the first temperature such that the confinement region is bound by a temperature gradient. The methods can further comprise trapping and depositing at least a portion of the plurality of capped particles.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 23, 2018
    Inventors: Yuebing Zheng, Linhan Lin, Xiaolei Peng