Patents by Inventor Linlin Mao

Linlin Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088388
    Abstract: The disclosure belongs to the technical field of sodium ion battery materials, and discloses a preparation method of a hard carbon anode material and use thereof. The preparation method includes the following steps of: performing first sintering on starch, crushing, and introducing air and nitrogen for secondary sintering to obtain porous hard block granules; and performing third sintering on the porous hard block granules, and then continuously warming up to perform fourth sintering to obtain the hard carbon anode material. The hard carbon anode material prepared by the disclosure has a reversible capacity of no less than 330 mAh/g, excellent cycle stability and initial coulomb efficiency.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 14, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Shuang ZHENG, Changdong LI, Linlin MAO, Dingshan RUAN
  • Publication number: 20240035127
    Abstract: A method for safely oxidising roasting NdFeB powder material. The method may include: S1: magnetizing and drying the NdFeB powder material; S2: heating the magnetized and dried NdFeB powder material to spontaneous combustion, and then preparing the spontaneous combustion product into a powder; and S3: magnetizing and then oxidising roasting the powder to obtain NdFeB oxide.
    Type: Application
    Filed: December 30, 2021
    Publication date: February 1, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO., LTD.
    Inventors: Jianfeng XU, Changdong LI, Dingshan RUAN, Linlin MAO, Yulong LIAO, Ding YANG
  • Patent number: 11876209
    Abstract: Disclosed are a pre-lithiated lithium ion positive electrode material, a preparation method therefor and use thereof. The lithium ion positive electrode material has a chemical formula of Li2O/[A(3-x)Mex]1/3-LiAO2, wherein A comprises M, and wherein M is at least one of Ni, Co, and Mn; and wherein Me is at least one of Ni, Mn, Al, Mg, Ti, Zr, Y, Mo, W, Na, Ce, Cr, Zn or Fe; and wherein 0<x<0.1. The material is co-doped with multiple elements, and these elements act synergistically to inhibit the irreversible phase change at a high voltage and improve the stability of the structure of a substrate. The spinel phase A(3-x)MexO4 structure contains the doping elements, which work together to improve the interfacial activity of the material and introduce more electrochemically active sites.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 16, 2024
    Assignees: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO. LTD.
    Inventors: Bin Li, Dingshan Ruan, Linlin Mao, Shenghe Tang, Xingyu Wu, Changdong Li
  • Publication number: 20240014382
    Abstract: The present disclosure belongs to the technical field of battery materials, and discloses a silicon/carbon composite anode material, and a preparation method and use thereof. The preparation method includes the following steps: S1. dissolving a graphite anode powder in an acid solution, and conducting solid-liquid separation (SLS) to obtain a precipitate; and washing and drying the precipitate, adding a reducing agent, and subjecting a resulting mixture to heat treatment to obtain a purified graphite material; and S2. mixing a modified silicon powder with the graphite material, adding a resulting mixture to a polyimide (PI)-containing N,N-dimethylformamide (DMF) solution, and stirring; and subjecting a resulting mixture to distillation and then to carbonization to obtain the silicon/carbon composite anode material.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Xia Fan, Changdong Li, Zhenhua Zhang, Linlin Mao, Dingshan Ruan, Yong Cai
  • Publication number: 20230411596
    Abstract: The invention belongs to the technical field of batteries, and discloses a preparation method and application of a lithium cobalt oxide soft-pack battery. The preparation method comprises the following steps: preparation of a lithium cobalt oxide positive electrode; preparation of a graphite negative electrode; preparation of an aluminum plastic film; screening and tab welding the positive and negative electrode, then winding core and packing, injecting an electrolyte to a resulting pack, perform first sealing, formation, second sealing; followed by capacity grading to obtain the lithium cobalt oxide soft pack battery. The preparation method for the lithium cobalt oxide soft-pack battery in a laboratory environment at room temperature provided by the present invention has simple operation and low environmental requirements, can be used in laboratories without dry room conditions, and reduces research and development cost and laboratory maintenance cost.
    Type: Application
    Filed: August 2, 2023
    Publication date: December 21, 2023
    Inventors: Xingyu Wu, Changdong Li, Dingshan Ruan, Linlin Mao, Maohua Feng, Bin Li
  • Publication number: 20230327071
    Abstract: Disclosed are a pre-lithiated lithium ion positive electrode material, a preparation method therefor and use thereof. The lithium ion positive electrode material has a chemical formula of Li2O/[A(3-x)Mex]1/3-LiAO2, wherein A comprises M, and wherein M is at least one of Ni, Co, and Mn; and wherein Me is at least one of Ni, Mn, Al, Mg, Ti, Zr, Y, Mo, W, Na, Ce, Cr, Zn or Fe; and wherein 0 < × < 0.1. The material is co-doped with multiple elements, and these elements act synergistically to inhibit the irreversible phase change at a high voltage and improve the stability of the structure of a substrate. The spinel phase A(3-x)MexO4 structure contains the doping elements, which work together to improve the interfacial activity of the material and introduce more electrochemically active sites.
    Type: Application
    Filed: July 29, 2021
    Publication date: October 12, 2023
    Inventors: Bin LI, Dingshan RUAN, Linlin MAO, Shenghe TANG, Xingyu WU, Changdong LI