Patents by Inventor Lionel E. Edwin

Lionel E. Edwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004190
    Abstract: A waveguide with an input coupler and an output coupler that redirects reflected light to a camera. The waveguide may be integrated in a lens of a wearable device such as a pair of glasses. Light sources emit light beams towards the eye. A portion of the light beams are reflected by the surface of the eye towards the input coupler located in front of the eye. The input coupler may be implemented according to diffractive or reflective technologies, and may be a straight or curved line of narrow width to focus at close distances but of a length long enough to sufficiently image the eye. The input coupler changes the angles of the light beams so that the light beams are relayed using total internal reflection and focused towards an output coupler of the waveguide. The light beams are redirected by the output coupler to the camera.
    Type: Application
    Filed: June 22, 2023
    Publication date: January 4, 2024
    Applicant: Apple Inc.
    Inventor: Lionel E. Edwin
  • Patent number: 11454495
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: September 27, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Samuel A. Miller
  • Patent number: 11314091
    Abstract: A stacked waveguide assembly can have multiple waveguide stacks. Each waveguide stack can include a plurality of waveguides, where a first waveguide stack may be associated with a first subcolor of each of three different colors, and a second waveguide stack may be associated with a second subcolor of each of the three different colors. For example, the first stack of waveguides can incouple blue, green, and red light at 440 nm, 520 nm, and 650 nm, respectively. The second stack of waveguides can incouple blue, green, and red light at 450 nm, 530 nm, and 660 nm, respectively.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 26, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20220026718
    Abstract: In a stacked waveguide assembly, the waveguides can comprise color filters, distributed filters, and/or switch materials. Examples of color filters include dyes, tints, or stains. Examples of distributed filters and/or switch materials include dichroic filters, Bragg gratings, electronically switchable glass, and electronically switchable mirrors. Switch materials can be designed or tuned to attenuate light of unwanted colors or wavelengths. The waveguides may each be associated with a particular design wavelength. This can mean that a waveguide that is associated with a design wavelength includes an incoupling optical element is configured to deflect light at the design wavelength to an associated light distributing element and that the associated wavelength selective region is configured to attenuate light not at the design wavelength.
    Type: Application
    Filed: August 6, 2021
    Publication date: January 27, 2022
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Patent number: 11086125
    Abstract: In a stacked waveguide assembly, the waveguides can comprise color filters, distributed filters, and/or switch materials. Examples of color filters include dyes, tints, or stains. Examples of distributed filters and/or switch materials include dichroic filters, Bragg gratings, electronically switchable glass, and electronically switchable mirrors. Switch materials can be designed or tuned to attenuate light of unwanted colors or wavelengths. The waveguides may each be associated with a particular design wavelength. This can mean that a waveguide that is associated with a design wavelength includes an incoupling optical element is configured to deflect light at the design wavelength to an associated light distributing element and that the associated wavelength selective region is configured to attenuate light not at the design wavelength.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 10, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20200225024
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 16, 2020
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Samuel A. Miller
  • Publication number: 20200166759
    Abstract: A stacked waveguide assembly can have multiple waveguide stacks. Each waveguide stack can include a plurality of waveguides, where a first waveguide stack may be associated with a first subcolor of each of three different colors, and a second waveguide stack may be associated with a second subcolor of each of the three different colors. For example, the first stack of waveguides can incouple blue, green, and red light at 440 nm, 520 nm, and 650 nm, respectively. The second stack of waveguides can incouple blue, green, and red light at 450 nm, 530 nm, and 660 nm, respectively.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Patent number: 10571251
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: February 25, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Samuel A. Miller
  • Patent number: 10534175
    Abstract: A stacked waveguide assembly can have multiple waveguide stacks. Each waveguide stack can include a plurality of waveguides, where a first waveguide stack may be associated with a first subcolor of each of three different colors, and a second waveguide stack may be associated with a second subcolor of each of the three different colors. For example, the first stack of waveguides can incouple blue, green, and red light at 440 nm, 520 nm, and 650 nm, respectively. The second stack of waveguides can incouple blue, green, and red light at 450 nm, 530 nm, and 660 nm, respectively.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: January 14, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20190323825
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, Samuel A. Miller
  • Patent number: 10378882
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 13, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, Samuel A. Miller
  • Publication number: 20190226830
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: February 26, 2019
    Publication date: July 25, 2019
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Samuel A. Miller
  • Patent number: 10260864
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: April 16, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Samuel A. Miller
  • Publication number: 20180136474
    Abstract: In a stacked waveguide assembly, the waveguides can comprise color filters, distributed filters, and/or switch materials. Examples of color filters include dyes, tints, or stains. Examples of distributed filters and/or switch materials include dichroic filters, Bragg gratings, electronically switchable glass, and electronically switchable mirrors. Switch materials can be designed or tuned to attenuate light of unwanted colors or wavelengths. The waveguides may each be associated with a particular design wavelength. This can mean that a waveguide that is associated with a design wavelength includes an incoupling optical element is configured to deflect light at the design wavelength to an associated light distributing element and that the associated wavelength selective region is configured to attenuate light not at the design wavelength.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Patent number: 9904058
    Abstract: In a stacked waveguide assembly, the waveguides can comprise color filters, distributed filters, and/or switch materials. Examples of color filters include dyes, tints, or stains. Examples of distributed filters and/or switch materials include dichroic filters, Bragg gratings, electronically switchable glass, and electronically switchable mirrors. Switch materials can be designed or tuned to attenuate light of unwanted colors or wavelengths. The waveguides may each be associated with a particular design wavelength. This can mean that a waveguide that is associated with a design wavelength includes an incoupling optical element is configured to deflect light at the design wavelength to an associated light distributing element and that the associated wavelength selective region is configured to attenuate light not at the design wavelength.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 27, 2018
    Assignee: Magic Leap, Inc.
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20170329140
    Abstract: In a stacked waveguide assembly, the waveguides can comprise color filters, distributed filters, and/or switch materials. Examples of color filters include dyes, tints, or stains. Examples of distributed filters and/or switch materials include dichroic filters, Bragg gratings, electronically switchable glass, and electronically switchable mirrors. Switch materials can be designed or tuned to attenuate light of unwanted colors or wavelengths. The waveguides may each be associated with a particular design wavelength. This can mean that a waveguide that is associated with a design wavelength includes an incoupling optical element is configured to deflect light at the design wavelength to an associated light distributing element and that the associated wavelength selective region is configured to attenuate light not at the design wavelength.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20170329075
    Abstract: A stacked waveguide assembly can have multiple waveguide stacks. Each waveguide stack can include a plurality of waveguides, where a first waveguide stack may be associated with a first subcolor of each of three different colors, and a second waveguide stack may be associated with a second subcolor of each of the three different colors. For example, the first stack of waveguides can incouple blue, green, and red light at 440 nm, 520 nm, and 650 nm, respectively. The second stack of waveguides can incouple blue, green, and red light at 450 nm, 530 nm, and 660 nm, respectively.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, John Graham Macnamara
  • Publication number: 20170122725
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Inventors: Ivan L. Yeoh, Lionel E. Edwin, Sam Miller
  • Publication number: 20170124928
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Inventors: Lionel E. Edwin, Ivan L. Yeoh, Sam Miller