Patents by Inventor Lipeng GUO

Lipeng GUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076701
    Abstract: Provided are a recombinant strain with modified gene BBD29_14900, and a method for constructing the same and use thereof, with the production of L-glutamic acid as a specific application. Further provided is a method for introducing a point mutation into the BBD29_14900 gene coding sequence in Corynebacterium or improving the expression thereof. The method can cause a bacterial strain with the mutation to increase the fermentation yield of glutamic acid. The point mutation involves a mutation of the base at position 1114 in the sequence of the BBD29_14900 gene from guanine (G) to adenine (A), and thus a substitution of aspartic acid at position 372 in the coded corresponding amino acid sequence with asparagine.
    Type: Application
    Filed: December 29, 2022
    Publication date: March 7, 2024
    Applicant: NINGXIA EPPEN BIOTECH CO., LTD
    Inventors: Fengyong MA, Aiying WEI, Gang MENG, Chunguang ZHAO, Huiping JIA, Houbo SU, Lipeng YANG, Xiaowei GUO, Bin TIAN, Xiaoqun ZHOU
  • Publication number: 20240067999
    Abstract: A recombinant strain with modified gene BBD29_11265 and a method for constructing the same are provided. The recombinant strain is a bacterium that generates L-glutamic acid, and has an improved expression of a polynucleotide encoding an amino acid sequence of SEQ ID NO: 3 or a homologous sequence thereof; the improved expression can be having a point mutation in, and an enhanced expression of the polynucleotide encoding an amino acid sequence of SEQ ID NO: 3 or a homologous sequence thereof. A genetically engineered bacterium in which the base at position 70 in the BBD29_112665 gene sequence is mutated to adenine from guanine, causing alanine at position 24 in the coded corresponding amino acid sequence to be substituted with threonine, and an engineered bacterium overexpressing the BBD29_112665 gene or BBD29_11265G70A gene are constructed in the present invention, facilitating an increase in the production and conversion rate of L-glutamic acid.
    Type: Application
    Filed: December 28, 2021
    Publication date: February 29, 2024
    Applicant: NINGXIA EPPEN BIOTECH CO., LTD
    Inventors: Aiying WEI, Gang MENG, Chunguang ZHAO, Huiping JIA, Houbo SU, Lipeng YANG, Xiaowei GUO, Bin TIAN, Fengyong MA, Xiaoqun ZHOU
  • Patent number: 11236440
    Abstract: The present invention discloses a copper-zinc-aluminum-iron single crystal alloy material having an ultra-large grain structure of 5-50 cm grade, obtained by annealing an as-cast alloy having a polycrystalline structure through a single phase region of 800-960° C. for 2-105 h, where the as-cast alloy includes, by weight percentage, 62-82% of copper, 6-29% of zinc, 5-12% of aluminum, and 2-5% of iron. In the present invention, the alloy compositions have an essential difference and are a copper-zinc-aluminum-iron quaternary alloy, and the iron element is an indispensable alloying element. The preparation process of the present invention is extremely simple and very easy to implement and has a very good application prospect.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 1, 2022
    Assignee: XIAMEN UNIVERSITY
    Inventors: Shuiyuan Yang, Jixun Zhang, Xinyu Qing, Lipeng Guo, Cuiping Wang, Xingjun Liu, Jinbin Zhang, Yixiong Huang
  • Publication number: 20200199779
    Abstract: The present invention discloses a copper-zinc-aluminum-iron single crystal alloy material having an ultra-large grain structure of 5-50 cm grade, obtained by annealing an as-cast alloy having a polycrystalline structure through a single phase region of 800-960° C. for 2-105 h, where the as-cast alloy includes, by weight percentage, 62-82% of copper, 6-29% of zinc, 5-12% of aluminum, and 2-5% of iron. In the present invention, the alloy compositions have an essential difference and are a copper-zinc-aluminum-iron quaternary alloy, and the iron element is an indispensable alloying element. The preparation process of the present invention is extremely simple and very easy to implement and has a very good application prospect.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 25, 2020
    Inventors: Shuiyuan YANG, Jixun ZHANG, Xinyu QING, Lipeng GUO, Cuiping WANG, Xingjun LIU, Jinbin ZHANG, Yixiong HUANG