Patents by Inventor Liqin Liu

Liqin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942149
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: March 26, 2024
    Assignee: MACROGENICS, INC.
    Inventors: Liqin Liu, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Publication number: 20230399399
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: March 20, 2023
    Publication date: December 14, 2023
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Patent number: 11820818
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 21, 2023
    Assignee: MACROGENICS, INC.
    Inventors: Leslie S. Johnson, Ling Huang, Gurunadh Reddy Chichili, Kalpana Shah, Chia-Ying Kao Lam, Stephen James Burke, Liqin Liu, Paul A. Moore, Ezio Bonvini, Bhaswati Barat
  • Patent number: 11795226
    Abstract: The present invention is directed to molecules (e.g., an antibody, a diabody, an scFv, an antibody, a TandAb, etc.) capable of binding an epitope of human CD16 (a “CD16 Binding Molecule”). The present invention is further directed to CD 16 Binding Molecules that are capable of binding an epitope of human CD16 and one or more epitope(s) of a Disease Antigen (“DA”) (e.g., a “CD16×DA Binding Molecule”). The present invention is particularly directed to such CD16×DA Binding Molecules that are antibodies, or that comprise an Epitope Binding Domain thereof, or are diabodies (including DART® diabodies), bispecific antibodies, TandAbs, other multispecific binding molecules (e.g., trivalent TRIDENT™ molecules), etc. The invention particularly concerns CD16×DA Binding Molecules that are capable of binding a Disease Antigen that is a Cancer Antigen or a Pathogen-Associated Antigen in addition to being able to bind CD 16.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 24, 2023
    Assignee: MacroGenics, Inc.
    Inventors: Gundo Diedrich, Liqin Liu, Hua Watson Li, Leslie S. Johnson
  • Publication number: 20230167178
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Application
    Filed: July 14, 2022
    Publication date: June 1, 2023
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Patent number: 11639386
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: May 2, 2023
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Publication number: 20230108562
    Abstract: Provided herein are prodrugs and methods of making and using thereof for stimulating the immune system, or treating cancer, autoimmune or an infectious disease.
    Type: Application
    Filed: January 11, 2021
    Publication date: April 6, 2023
    Applicant: ASKGENE PHARMA, INC.
    Inventors: Yuefeng LU, Chunxiao YU, Jian-Feng LU, Liqin LIU
  • Publication number: 20220406376
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 22, 2022
    Inventors: Liqin LIU, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Patent number: 11459394
    Abstract: The present invention is directed to binding molecules that possess one or more epitope-binding sites specific for an epitope of CD137 and one or more epitope-binding sites specific for an epitope of a tumor antigen (“TA”) (e.g., a “CD137×TA Binding Molecule”). In one embodiment, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific tetravalent diabodies, that are composed of two, three, four or more than four polypeptide chains and possessing two epitope-binding sites each specific for an epitope of CD137 and two epitope-binding sites each specific for an epitope of a TA. Alternatively, such CD137×TA Binding Molecules will be bispecific molecules, especially bispecific trivalent binding molecules composed of three or more polypeptide chains and possessing one or two epitope-binding sites each specific for an epitope of CD137 and one or two epitope-binding sites each specific for an epitope of a TA.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 4, 2022
    Assignee: MACROGENICS, INC.
    Inventors: Liqin Liu, Chia-Ying Kao Lam, Gundo Diedrich, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini
  • Publication number: 20220306714
    Abstract: The present disclosure provides novel isolated IL-2 fusion molecules that preferentially activate regulatory T cells (Treg) in vitro and in vivo. Further included are methods of making and using said novel fusion molecules to treat inflammatory and autoimmune diseases.
    Type: Application
    Filed: August 12, 2020
    Publication date: September 29, 2022
    Applicant: ASKGENE PHARMA, INC.
    Inventors: Chen YAO, Chunxiao YU, Yuefeng LU, Liqin LIU, Kurt SHANEBECK, Shiwen ZHANG
  • Publication number: 20220289822
    Abstract: Provided herein are IL-21 prodrugs and methods of making and using thereof for stimulating the immune system, or treating cancer or an infectious disease.
    Type: Application
    Filed: August 21, 2020
    Publication date: September 15, 2022
    Applicant: ASKGENE PHARMA, INC.
    Inventors: Yuefeng LU, Chunxiao YU, Liqin LIU, Jian-Feng (Jeff) LU, Jui Chang (Ray) CHUANG
  • Patent number: 11421031
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 23, 2022
    Assignees: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20210246194
    Abstract: The present invention is directed to optimized HIV-1 gp41-Binding Molecules having reduced immunogenicity. More specifically, the invention relates to optimized gp41-Binding Molecules that comprise a gp41-binding Variable Light Chain (VL) Domain and/or a gp41-binding Variable Heavy Chain (VH) Domain that has/have been optimized to reduce the immunogenicity of such Domain(s) upon administration to a recipient subject. The invention particularly pertains to gp41-Binding Molecules that are multispecific gp41-Binding Molecules (including bispecific diabodies (including DART® diabodies), BiTE®s, bispecific antibodies, trivalent binding molecules (including TRIDENT™ molecules), etc.) that comprise: (i) such optimized gp41-binding Variable Domain(s) and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 12, 2021
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Chia-Ying Kao Lam, Gundo Diedrich, Jeffrey Lee Nordstrom, Liqin Liu, Leslie S. Johnson, Scott Koenig, Barton F. Haynes, Guido Ferrari
  • Publication number: 20210171630
    Abstract: The present invention is directed to molecules (e.g., an antibody, a diabody, an scFv, an antibody, a TandAb, etc.) capable of binding an epitope of human CD16 (a “CD16 Binding Molecule”). The present invention is further directed to CD 16 Binding Molecules that are capable of binding an epitope of human CD16 and one or more epitope(s) of a Disease Antigen (“DA”) (e.g., a “CD16 x DA Binding Molecule”). The present invention is particularly directed to such CD16 x DA Binding Molecules that are antibodies, or that comprise an Epitope Binding Domain thereof, or are diabodies (including DART® diabodies), bispecific antibodies, TandAbs, other multispecific binding molecules (e.g., trivalent TRIDENT™ molecules), etc. The invention particularly concerns CD16 x DA Binding Molecules that are capable of binding a Disease Antigen that is a Cancer Antigen or a Pathogen-Associated Antigen in addition to being able to bind CD 16.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 10, 2021
    Applicant: MacroGenics, Inc.
    Inventors: Gundo Diedrich, Liqin Liu, Hua Watson Li, Leslie S. Johnson
  • Publication number: 20210095021
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Application
    Filed: June 22, 2020
    Publication date: April 1, 2021
    Applicants: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Publication number: 20200354439
    Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecule and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells within the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28 or CH44.
    Type: Application
    Filed: June 2, 2020
    Publication date: November 12, 2020
    Applicants: Duke University, MacroGenics, Inc., The University of North Carolina at Chapel Hill
    Inventors: Barton F. HAYNES, Guido FERRARI, Scott KOENIG, Leslie S. JOHNSON, Chia-Ying Kao LAM, Julia A. SUNG, David M. MARGOLIS, Liqin LIU, Jeffrey Lee NORDSTROM
  • Patent number: 10730947
    Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: August 4, 2020
    Assignees: MacroGenics, Inc., Duke University
    Inventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
  • Patent number: 10717778
    Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecules and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells wherein the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28, or CH44.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 21, 2020
    Assignees: DUKE UNIVERSITY, MACROGENICS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Barton F. Haynes, Guido Ferrari, Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Julia A. Sung, David M. Margolis, Liqin Liu, Jeffrey Lee Nordstrom
  • Publication number: 20200216537
    Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: March 3, 2020
    Publication date: July 9, 2020
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
  • Publication number: 20200207850
    Abstract: The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel ROR1-binding antibody, as well as derivatives thereof and uses for such compositions.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Leslie S. JOHNSON, Ling HUANG, Gurunadh Reddy CHICHILI, Kalpana SHAH, Chia-Ying Kao LAM, Stephen James BURKE, Liqin LIU, Paul A. MOORE, Ezio BONVINI, Bhaswati BARAT