Patents by Inventor Liqing Wen

Liqing Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851585
    Abstract: A polishing composition includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a hard mask removal rate enhancer. A method of polishing a substrate includes the steps of: applying the polishing composition described herein to a surface of a substrate, wherein the surface comprises ruthenium or a hard mask material; and bringing a pad into contact with the surface of the substrate and moving the pad in relation to the substrate.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: December 26, 2023
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: Ting-Kai Huang, Tawei Lin, Bin Hu, Liqing Wen, Yannan Liang
  • Patent number: 11732157
    Abstract: A polishing composition includes an abrasive; an optional pH adjuster; a barrier film removal rate enhancer; a TEOS removal rate inhibitor; a cobalt removal rate enhancer; an azole-containing corrosion inhibitor; and a cobalt corrosion inhibitor.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: August 22, 2023
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: Yannan Liang, Bin Hu, Liqing Wen, Shu-Wei Chang
  • Publication number: 20230203343
    Abstract: A polishing composition includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a hard mask removal rate enhancer. A method of polishing a substrate includes the steps of: applying the polishing composition described herein to a surface of a substrate, wherein the surface comprises ruthenium or a hard mask material; and bringing a pad into contact with the surface of the substrate and moving the pad in relation to the substrate.
    Type: Application
    Filed: August 4, 2022
    Publication date: June 29, 2023
    Inventors: Ting-Kai Huang, Tawei Lin, Bin Hu, Liqing Wen, Yannan Liang
  • Patent number: 11414568
    Abstract: A polishing composition includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a hard mask removal rate enhancer. A method of polishing a substrate includes the steps of: applying the polishing composition described herein to a surface of a substrate, wherein the surface comprises ruthenium or a hard mask material; and bringing a pad into contact with the surface of the substrate and moving the pad in relation to the substrate.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 16, 2022
    Assignee: Fujifilm Electronic Materials U.S.A., Inc.
    Inventors: Ting-Kai Huang, Tawei Lin, Bin Hu, Liqing Wen, Yannan Liang
  • Publication number: 20220135840
    Abstract: This disclosure relates polishing compositions that include (1) at least one abrasive; (2) at least one organic acid or a salt thereof; (3) at least one first amine compound, the at least one first amine compound including an alkylamine having a 6-24 carbon alkyl chain; (4) at least one second amine compound containing at least two nitrogen atoms, the second amine compound being different from the first amine compound; and (5) an aqueous solvent.
    Type: Application
    Filed: October 25, 2021
    Publication date: May 5, 2022
    Inventors: Qingmin Cheng, Bin Hu, Yannan Liang, Hyosang Lee, Liqing Wen, Yibin Zhang, Abhudaya Mishra
  • Publication number: 20210301177
    Abstract: This disclosure features a polishing composition that includes at least one abrasive; at least one first corrosion inhibitor that includes a phosphate or a phosphonate group; at least one complexing agent; at least one second corrosion inhibitor that is at least one azole compound; and optionally a pH adjuster.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 30, 2021
    Inventors: James McDonough, Ting-Kai Huang, Yannan Liang, Shu-Wei Chang, Sung Tsai Lin, Liqing Wen
  • Publication number: 20210253903
    Abstract: A polishing composition includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a hard mask removal rate enhancer. A method of polishing a substrate includes the steps of: applying the polishing composition described herein to a surface of a substrate, wherein the surface comprises ruthenium or a hard mask material; and bringing a pad into contact with the surface of the substrate and moving the pad in relation to the substrate.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 19, 2021
    Inventors: Ting-Kai Huang, Tawei Lin, Bin Hu, Liqing Wen, Yannan Liang
  • Publication number: 20210253904
    Abstract: A polishing composition, includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a ruthenium removal rate enhancer. A method of polishing a substrate includes the steps of: applying the polishing composition described herein to a surface of a substrate, wherein the surface comprises ruthenium or a hard mask material; and bringing a pad into contact with the surface of the substrate and moving the pad in relation to the substrate.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 19, 2021
    Inventors: Ting-Kai Huang, Tawei Lin, Bin Hu, Liqing Wen, Yannan Liang
  • Publication number: 20210108106
    Abstract: A polishing composition includes an abrasive; an optional pH adjuster; a barrier film removal rate enhancer; a TEOS removal rate inhibitor; a cobalt removal rate enhancer; an azole-containing corrosion inhibitor; and a cobalt corrosion inhibitor.
    Type: Application
    Filed: October 6, 2020
    Publication date: April 15, 2021
    Inventors: Yannan Liang, Bin Hu, Liqing Wen, Shu-Wei Chang
  • Publication number: 20210087431
    Abstract: A polishing composition includes an abrasive; a pH adjuster; a barrier film removal rate enhancer; a first low-k removal rate inhibitor; a second low-k removal rate inhibitor; an azole-containing corrosion inhibitor; and a cobalt corrosion inhibitor. This disclosure also relates to a method of polishing a substrate that comprises cobalt using the polishing compositions described herein.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Inventors: Yannan Liang, Liqing Wen, Bin Hu, Tawei Lin
  • Patent number: 10676646
    Abstract: A slurry that polishes surfaces or substrates which includes cobalt. The slurry further comprises an anionic and/or cationic surfactant, each of which has a phosphate group, a long chain alkyl group, or both. The slurry also includes a corrosion inhibitor, abrasives, removal rate enhancers, solvents, pH adjustors, and chelating agents. The pH of the slurry is preferably 8 or higher.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 9, 2020
    Assignee: FUJIFILM ELECTRONIC MATERIALS U.S.A., INC.
    Inventors: Yannan Liang, Liqing Wen, Bin Hu, Hyosang Lee, Shu-Wei Chang, Sung Tsai Lin
  • Publication number: 20180340094
    Abstract: A slurry that polishes surfaces or substrates which includes cobalt. The slurry further comprises an anionic and/or cationic surfactant, each of which has a phosphate group, a long chain alkyl group, or both. The slurry also includes a corrosion inhibitor, abrasives, removal rate enhancers, solvents, pH adjustors, and chelating agents. The pH of the slurry is preferably 8 or higher.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 29, 2018
    Inventors: Yannan Liang, Liqing Wen, Bin Hu, Hyosang Lee, Shu-Wei Chang, Sung Tsai Lin
  • Patent number: 8779011
    Abstract: A method for producing and using an ultrapure colloidal silica dispersion is disclosed. The ultrapure colloidal silica dispersion has less than 200 ppb of each trace metal impurity disposed therein, excluding potassium and sodium, and less than 2 ppm residual alcohol. The method comprises dissolving a fumed silica in an aqueous solvent comprising an alkali metal hydroxide to produce an alkaline silicate solution, removing the alkali metal via ion exchange to generate a silicic acid solution, adjusting temperature, concentration and pH of said silicic acid solution to values sufficient to initiate nucleation and particle growth, and cooling the silicic acid solution at a rate sufficient to produce the colloidal silica dispersion.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: July 15, 2014
    Assignee: Fujifilm Planar Solutions, LLC
    Inventors: Deepak Mahulikar, Yuhu Wang, Ken A. Delbridge, Gert R. M. Moyaerts, Saeed H. Mohseni, Nichole R. Koontz, Bin Hu, Liqing Wen
  • Patent number: 8211193
    Abstract: A method of chemical mechanical polishing a surface of a substrate including the step of: contacting the substrate and a composition including a plurality of colloidal silica particles having less than 200 ppb of each trace metal impurity, excluding potassium and sodium, have less than 2 ppm residual alcohol and wherein the cumulative concentration of the trace metal, excluding potassium and sodium, is in the range from about 0.5 to about 5 ppm; and a medium for suspending the particles; wherein the composition is an ultrapure colloidal silica dispersion; and wherein the contacting is carried out at a temperature and for a period of time sufficient to planarize the substrate.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: July 3, 2012
    Assignee: Fujifilm Planar Solutions, LLC
    Inventors: Deepak Mahulikar, Yuhu Wang, Ken A. Delbridge, Gert R. M. Moyaerts, Saeed H. Mohseni, Nichole R. Koontz, Bin Hu, Liqing Wen
  • Publication number: 20120145950
    Abstract: An ultrapure colloidal silica dispersion comprising colloidal silica particles having a mean or aggregate particle size from about 10 to about 200 nm, wherein the colloidal silica dispersion has less than 200 ppb, of each trace metal impurity disposed therein, excluding potassium and sodium, and have less than 2 ppm residual alcohol. A method for producing and using the same is also disclosed.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 14, 2012
    Inventors: Deepak Mahulikar, Yuhu Wang, Ken A. Delbridge, Gert R.M. Moyaerts, Saeed H. Mohseni, Nichole R. Koontz, Bin Hu, Liqing Wen
  • Publication number: 20070254964
    Abstract: An ultrapure colloidal silica dispersion comprising colloidal silica particles having a mean or aggregate particle size from about 10 to about 200 nm, wherein the colloidal silica dispersion has less than 200 ppb of each trace metal impurity disposed therein, excluding potassium and sodium, and have less than 2 ppm residual alcohol.
    Type: Application
    Filed: June 15, 2007
    Publication date: November 1, 2007
    Inventors: Deepak Mahulikar, Yuhu Wang, Ken Delbridge, Gert Moyaerts, Saeed Mohseni, Nichole Koontz, Bin Hu, Liqing Wen
  • Publication number: 20070075292
    Abstract: A method of chemical mechanical polishing a surface of a substrate including the step of: contacting the substrate and a composition including a plurality of colloidal silica particles having less than 200 ppb of each trace metal impurity, excluding potassium and sodium, have less than 2 ppm residual alcohol and wherein the cumulative concentration of the trace metal, excluding potassium and sodium, is in the range from about 0.5 to about 5 ppm; and a medium for suspending the particles; wherein the composition is an ultrapure colloidal silica dispersion; and wherein the contacting is carried out at a temperature and for a period of time sufficient to planarize the substrate.
    Type: Application
    Filed: September 22, 2006
    Publication date: April 5, 2007
    Inventors: Deepak Mahulikar, Yuhu Wang, Ken Delbridge, Gert Moyaerts, Saeed Mohseni, Nichole Koontz, Bin Hu, Liqing Wen