Patents by Inventor Liran Yosef Haller

Liran Yosef Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11839873
    Abstract: Provided are valveless microfluidic flowchips comprising fluid flow barrier structures or configurations. Further provided are systems and methods having increased fluid transfer control in a valveless microfluidic flowchip. The systems and methods can be used in the present valveless microfluidic flowchips as well as in currently available valveless microfluidic flowchips.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: December 12, 2023
    Assignee: Protein Fluidics, Inc.
    Inventors: Evan Francis Cromwell, Wilson Toy, Liran Yosef Haller, Ori Hoxha, Braxton Dunstone, Hong Jiao
  • Publication number: 20220362763
    Abstract: Provided are valveless microfluidic flowchips comprising fluid flow barrier structures or configurations. Further provided are systems and methods having increased fluid transfer control in a valveless microfluidic flowchip. The systems and methods can be used in the present valveless microfluidic flowchips as well as in currently available valveless microfluidic flowchips.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 17, 2022
    Inventors: Evan Francis Cromwell, Wilson Toy, Liran Yosef Haller, Ori Hoxha, Braxton Dunstone, Hong Jiao
  • Patent number: 11376589
    Abstract: Provided are valveless microfluidic flowchips comprising fluid flow barrier structures or configurations. Further provided are systems and methods having increased fluid transfer control in a valveless microfluidic flowchip. The systems and methods can be used in the present valveless microfluidic flowchips as well as in currently available valveless microfluidic flowchips.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: July 5, 2022
    Assignee: Protein Fluidics, Inc.
    Inventors: Evan Francis Cromwell, Wilson Toy, Liran Yosef Haller, Ori Hoxha, Braxton Dunstone, Hong Jiao
  • Publication number: 20190329247
    Abstract: Provided are valveless microfluidic flowchips comprising fluid flow barrier structures or configurations. Further provided are systems and methods having increased fluid transfer control in a valveless microfluidic flowchip. The systems and methods can be used in the present valveless microfluidic flowchips as well as in currently available valveless microfluidic flowchips.
    Type: Application
    Filed: April 30, 2019
    Publication date: October 31, 2019
    Inventors: Evan Francis Cromwell, Wilson Toy, Liran Yosef Haller, Ori Hoxha, Braxton Dunstone, Hong Jiao
  • Patent number: 9956558
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Such systems are suitable for automated, multi-input, multi-output homogeneous assays.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 1, 2018
    Assignee: HJ Science & Technology, Inc.
    Inventors: Hong Jiao, Erik C. Jensen, Homayun Mehrabani, Liran Yosef Haller
  • Patent number: 9956557
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Such systems are suitable for automated microwell plate interfaces.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 1, 2018
    Assignee: HJ Science & Technology, Inc.
    Inventors: Hong Jiao, Erik C Jensen, Homayun Mehrabani, Liran Yosef Haller
  • Patent number: 9733239
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Systems may be configured with multiple switched interaction regions connected in series for scalable, multiplexed immunoassays. Multiple, switched interaction regions may also be implemented with microvalves.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: August 15, 2017
    Assignee: HJ Science & Technology, Inc.
    Inventors: Hong Jiao, Erik C Jensen, Homayun Mehrabani, Liran Yosef Haller
  • Publication number: 20170021353
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Systems may be configured with multiple switched interaction regions connected in series for scalable, multiplexed immunoassays. Multiple, switched interaction regions may also be implemented with microvalves.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 26, 2017
    Applicant: HJ Science & Technology, Inc.
    Inventors: Hong Jiao, Erik C. Jensen, Homayun Mehrabani, Liran Yosef Haller
  • Publication number: 20170021352
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Such systems are suitable for automated microwell plate interfaces.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 26, 2017
    Applicant: HJ SCIENCE & TECHNOLOGY, INC.
    Inventors: Hong Jiao, Erik C Jensen, Homayun Mehrabani, Liran Yosef Haller
  • Publication number: 20170021351
    Abstract: Reconfigurable microfluidic systems are based on networks of microfluidic cavities connected by hydrophobic microfluidic channels. Each cavity is classified as either a reservoir or a node, and includes a pressure port via which gas pressure may be applied. Sequences of gas pressures, applied to reservoirs and nodes according to a fluid transfer rule, enable fluid to be moved from any reservoir to any other reservoir in a system. Such systems are suitable for automated, multi-input, multi-output homogeneous assays.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 26, 2017
    Applicant: HJ Science & Technology, Inc.
    Inventors: Hong Jiao, Erik C. Jensen, Homayun Mehrabani, Liran Yosef Haller