Patents by Inventor Lisa A. Laffend

Lisa A. Laffend has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210071134
    Abstract: A fermentation broth which includes a microbial cell which has been subjected to a condition under which the activity an endogenous transporter for 2? fucosyllactose is increased. Also provided are methods for increasing export of 2? fucosyllactose from a microbial cell, methods for identifying an endogenous yeast transporter of 2? fucosyllactose, and microbial cells genetically engineered to increase the activity of an endogenous transporter of 2? fucosyllactose.
    Type: Application
    Filed: April 23, 2018
    Publication date: March 11, 2021
    Inventors: Lisa A. LAFFEND, Mark J. NELSON, Lori Ann MAGGIO-HALL
  • Publication number: 20190323053
    Abstract: A fermentation broth which includes a microbial cell which has been subjected to a condition under which the activity an endogenous transporter for 2? fucosyllactose is increased. Also provided are methods for increasing export of 2? fucosyllactose from a microbial cell, methods for identifying an endogenous yeast transporter of 2? fucosyllactose, and microbial cells genetically engineered to increase the activity of an endogenous transporter of 2? fucosyllactose.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 24, 2019
    Inventors: Lisa A LAFFEND, Mark J. Nelson, Lori Ann Maggio-Hall
  • Publication number: 20090253192
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Application
    Filed: February 16, 2009
    Publication date: October 8, 2009
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend
  • Patent number: 7504250
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Grant
    Filed: January 16, 2006
    Date of Patent: March 17, 2009
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited
  • Patent number: 7452710
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 18, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited
  • Publication number: 20070048849
    Abstract: A process is provided for the bioconversion of a carbon substrate to 1,3-propanediol by a single organism utilizing microorganisms containing the genes encoding for an active glycerol or diol dehydratase enzyme by contacting these organisms with a carbon substrate under the appropriate fermentation conditions.
    Type: Application
    Filed: October 30, 2006
    Publication date: March 1, 2007
    Inventors: Lisa Laffend, Vasantha Nagarajan, Charles Nakamura
  • Publication number: 20060148053
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Application
    Filed: January 16, 2006
    Publication date: July 6, 2006
    Inventors: Mark Emptage, Sharon Haynie, Lisa Laffend, Jeff Pucci, Gregory Whited
  • Patent number: 7067300
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: June 27, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Marshall Whited
  • Publication number: 20060121588
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Application
    Filed: February 13, 2006
    Publication date: June 8, 2006
    Inventors: Mark Emptage, Sharon Haynie, Lisa Laffend, Jeff Pucci, Gregory Whited
  • Publication number: 20030157674
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Application
    Filed: October 21, 2002
    Publication date: August 21, 2003
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Marshall Whited
  • Patent number: 6514733
    Abstract: The present invention provides an improved method for the biological production of 1,3-propanediol from a fermentable carbon source in a single microorganism. In one aspect of the present invention, an improved process for the conversion of glucose to 1,3-propanediol is achieved by the use of an E. coli transformed with the Klebsiella pneumoniae dha regulon genes dhaR, orfY, dhaT, orfX, orfW, dhaB1, dhaB2, dhaB3, and orfZ, all these genes arranged in the same genetic organization as found in wild type Klebsiella pneumoniae. In another aspect of the present invention, an improved process for the production of 1,3-propanediol from glucose using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, and a dehydratase reactivation factor compared to an identical process using a recombinant E. coli containing genes encoding a G3PDH, a G3P phosphatase, a dehydratase, a dehydratase reactivation factor and a 1,3-propanediol oxidoreductase (dhaT).
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: February 4, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Emptage, Sharon L. Haynie, Lisa A. Laffend, Jeff P. Pucci, Gregory Whited