Patents by Inventor Lisa Anne Moore

Lisa Anne Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8943855
    Abstract: A method of cutting an article (172) from a chemically strengthened glass substrate (110) includes generating a pulsed laser beam (108) from a laser source (106). The pulsed laser beam (108) may have a pulse duration of less than about 1000 fs and an output wavelength such that the chemically strengthened glass substrate (110) is substantially transparent to the pulsed laser beam (108). The pulsed laser beam (108) may be focused to form a beam waist (109) that is positioned in the same horizontal plane as an inner tensile region (124) of the chemically strengthened glass substrate (110). The beam waist (109) may be translated in a first pass along a cut line (116), wherein the beam waist (109) traverses an edge (111) of the chemically strengthened glass substrate. The beam waist (113) may then be translated in a second pass along the cut line (116) such that a crack (119) propagates from the edge (113) along the cut line (116) ahead of the translated beam waist (109) during the second pass.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Corning Incorporated
    Inventors: Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Patent number: 8932510
    Abstract: A method for cutting a glass article from a strengthened glass substrate having a surface compression layer and a tensile layer includes forming an edge defect in the surface compression layer on a first edge of the strengthened glass substrate. The method further includes propagating a through vent through the surface compression and tensile layers at the edge defect. The through vent precedes a region of separation along a cut line between the glass article and the strengthened glass substrate.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 13, 2015
    Assignee: Corning Incorporated
    Inventors: Xinghua Li, Lisa Anne Moore
  • Publication number: 20140373571
    Abstract: A fused silica glass article having greater resistance to damage induced by exposure to laser radiation such as laser induced wavefront distortion at deep ultraviolet (DUV) wavelengths, and behaviors such as fluence dependent transmission, which are related to intrinsic defects in the glass. The improved resistance to laser damage may be achieved in some embodiments by loading the glass article with molecular hydrogen (H2) at temperatures of about 400° C. or less, or 350° C. or less. The combined OH and deuteroxyl (OD) concentration may be less than 10 ppm by weight. In other embodiments, the improved resistance may be achieved by providing the glass with 10 to 60 ppm deuteroxyl (OD) species by weight. In still other embodiments, improved resistance to such laser damage may be achieved by both loading the glass article with molecular hydrogen at temperatures of about 350° C. or less and providing the glass with less than 10 ppm combined OH and OD, or 10 to 60 ppm OD by weight.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 25, 2014
    Applicant: Corning Incorporated
    Inventors: Kenneth Edward Hrdina, Changyi Lai, Lisa Anne Moore, Ulrich Wilhelm Heinz Neukirch, William Rogers Rosch
  • Publication number: 20140225022
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as lanthanum boride, titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 14, 2014
    Applicant: Corning Incorporated
    Inventors: Monika Backhaus-Ricoult, Lisa Anne Moore, Charlene Marie Smith, Todd Parrish St Clair
  • Patent number: 8776547
    Abstract: This disclosure describes a process for strengthening, by ion-exchange, the edges of an article separated from a large glass sheet after the sheet has been ion-exchanged to strengthen by exposing only the one or a plurality of the edges of the separated article to an ion-exchange medium (for example without limitation, a salt, paste, frit, glass) while the glass surface is maintained at temperatures less than 200° C.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: July 15, 2014
    Assignee: Corning Incorporated
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Lisa Anne Moore, Alexander Mikhailovich Streltsov, Sergio Tsuda, Jonathan E Walter
  • Publication number: 20140034374
    Abstract: Glass interposer panels and methods for forming the same are described herein. The interposer panels include a glass substrate core formed from an ion-exchangeable glass. A first layer of compressive stress may extend from a first surface of the glass substrate into the thickness T of the glass substrate core to a first depth of layer D1. A second layer of compressive stress may be spaced apart from the first layer of compressive stress and extending from a second surface of the glass substrate core into the thickness T of the glass substrate core to a second depth of layer D2. A plurality of through-vias may extend through the thickness T of the glass substrate core. Each through-via is surrounded by an intermediate zone of compressive stress that extends from the first layer of compressive stress to the second layer of compressive stress adjacent to a sidewall of each through-via.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 6, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Ivan A. Cornejo, Sinue Gomez, James Micheal Harris, Lisa Anne Moore, Sergio Tsuda
  • Patent number: 8635887
    Abstract: Methods for separating glass articles from glass substrate sheets are described herein. In one embodiment, a method includes focusing a laser beam on at least one surface of the glass substrate sheet such that the laser beam has an asymmetrical intensity distribution at the at least one surface of the glass substrate sheet. The method further includes translating the laser beam on the at least one surface of the glass substrate sheet along a desired groove line to form at least one groove on the at least one surface of the glass substrate sheet. The at least one groove extends partially through a thickness of the glass substrate sheet along the desired groove line and has bevelled or chamfered walls. The glass article may be separated from the glass substrate sheet along the at least one groove.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: January 28, 2014
    Assignee: Corning Incorporated
    Inventors: Matthew L Black, Ivan A Cornejo, Melinda Ann Drake, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Patent number: 8616024
    Abstract: Methods for separating strengthened glass articles from glass substrate sheets and strengthened glass substrate sheets are described herein. In one embodiment, a method of separating a glass article from a glass substrate sheet includes forming at least one groove on at least one surface of the glass substrate sheet. The at least one groove continuously extends around a perimeter of the glass article and extends partially through a thickness of the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process and separating the glass article from the glass substrate sheet along the at least one groove such that one or more edges of the glass article are under compressive stress. In another embodiment, a strengthened glass substrate sheet includes an ion exchanged glass having one or more grooves in one or more strengthened surface layers, the one or more grooves defining glass articles.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 31, 2013
    Assignee: Corning Incorporated
    Inventors: Ivan A Cornejo, Gregory Scott Glaesemann, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda, Michael Henry Wasilewski
  • Patent number: 8584354
    Abstract: Glass interposer panels and methods for forming the same are described herein. The interposer panels include a glass substrate core formed from an ion-exchangeable glass. A first layer of compressive stress may extend from a first surface of the glass substrate into the thickness T of the glass substrate core to a first depth of layer D1. A second layer of compressive stress may be spaced apart from the first layer of compressive stress and extending from a second surface of the glass substrate core into the thickness T of the glass substrate core to a second depth of layer D2. A plurality of through-vias may extend through the thickness T of the glass substrate core. Each through-via is surrounded by an intermediate zone of compressive stress that extends from the first layer of compressive stress to the second layer of compressive stress adjacent to a sidewall of each through-via.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Corning Incorporated
    Inventors: Ivan A Cornejo, Sinue Gomez, James Micheal Harris, Lisa Anne Moore, Sergio Tsuda
  • Patent number: 8539794
    Abstract: Strengthened glass substrate sheets and methods of fabricating glass panels from glass substrate sheets are disclosed. In one embodiment, a method includes forming at least one series of holes through a thickness of the glass substrate sheet, wherein the at least one series of holes defines a perimeter of the glass panel to be separated from the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process, and separating the glass panel from the glass substrate sheet along the at least one series of holes. At least a portion of one or more edges of the glass panel has an associated edge compressive layer. In another embodiment, a strengthened glass substrate sheet includes at least one series of holes that defines a perimeter of one or more glass panels to be separated from the strengthened glass substrate sheet.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 24, 2013
    Assignee: Corning Incorporated
    Inventors: Ivan A Cornejo, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20130240801
    Abstract: Doped and partially-reduced oxide (e.g., SrTiO3-based) thermoelectric materials. The thermoelectric materials can be single-doped or multi-doped (e.g., co-doped) and display a thermoelectric figure of merit (ZT) of 0.2 or higher at 1050K. Methods of forming the thermoelectric materials involve combining and reacting suitable raw materials and heating them in a graphite environment to at least partially reduce the resulting oxide. Optionally, a reducing agent such as titanium carbide, titanium nitride, or titanium boride can be incorporated into the starting materials prior to the reducing step in graphite. The reaction product can be sintered to form a dense thermoelectric material.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: CORNING INCORPORATED
    Inventors: MONIKA BACKHAUS-RICOULT, LISA ANNE MOORE, CHARLENE MARIE SMITH, TODD PARRISH ST. CLAIR
  • Publication number: 20120247525
    Abstract: Tungsten-titanium-phosphate materials and methods of making and using the same.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Bruce Gardiner Aitken, Lisa Anne Moore
  • Patent number: 8268740
    Abstract: A fused silica glass having a refractive index homogeneity of less or equal to about 5 ppm over an aperture area of at least about 50 cm2. The fused silica glass is also substantially free of halogens and has an adsorption edge of less than about 160 nm. The glass is dried by exposing a silica soot blank to carbon monoxide before consolidation, reducing the combined concentration of hydroxyl (i.e., OH, where H is protium (11H) and deuteroxyl (OD), where D is deuterium (12H)) of less than about 20 ppm by weight in one embodiment, less than about 5 ppm by weight in another embodiment, and less than about 1 ppm by weight in a third embodiment.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Corning Incorporated
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Rostislav Radievich Khrapko, Lisa Anne Moore, Charlene Marie Smith
  • Publication number: 20120216570
    Abstract: This disclosure describes a process for strengthening, by ion-exchange, the edges of an article separated from a large glass sheet after the sheet has been ion-exchanged to strengthen by exposing only the one or a plurality of the edges of the separated article to an ion-exchange medium (for example without limitation, a salt, paste, frit, glass) while the glass surface is maintained at temperatures less than 200° C.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 30, 2012
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Lisa Anne Moore, Alexander Mikhailovich Streltsov, Sergio Tsuda, Jonathan E. Walter
  • Publication number: 20120196071
    Abstract: Strengthened glass substrate sheets and methods of fabricating glass panels from glass substrate sheets are disclosed. In one embodiment, a method includes forming at least one series of holes through a thickness of the glass substrate sheet, wherein the at least one series of holes defines a perimeter of the glass panel to be separated from the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process, and separating the glass panel from the glass substrate sheet along the at least one series of holes. At least a portion of one or more edges of the glass panel has an associated edge compressive layer. In another embodiment, a strengthened glass substrate sheet includes at least one series of holes that defines a perimeter of one or more glass panels to be separated from the strengthened glass substrate sheet.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventors: Ivan A. Cornejo, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20120145331
    Abstract: A method of cutting an article (172) from a chemically strengthened glass substrate (110) includes generating a pulsed laser beam (108) from a laser source (106). The pulsed laser beam (108) may have a pulse duration of less than about 1000 fs and an output wavelength such that the chemically strengthened glass substrate (110) is substantially transparent to the pulsed laser beam (108). The pulsed laser beam (108) may be focused to form a beam waist (109) that is positioned in the same horizontal plane as an inner tensile region (124) of the chemically strengthened glass substrate (110). The beam waist (109) may be translated in a first pass along a cut line (116), wherein the beam waist (109) traverses an edge (111) of the chemically strengthened glass substrate. The beam waist (113) may then be translated in a second pass along the cut line (116) such that a crack (119) propagates from the edge (113) along the cut line (116) ahead of the translated beam waist (109) during the second pass.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 14, 2012
    Applicant: Kior, Inc,
    Inventors: Sinue Gomez, Lisa Anne Moore, Sergio Tsuda
  • Publication number: 20120135177
    Abstract: Methods for separating strengthened glass articles from glass substrate sheets and strengthened glass substrate sheets are described herein. In one embodiment, a method of separating a glass article from a glass substrate sheet includes forming at least one groove on at least one surface of the glass substrate sheet. The at least one groove continuously extends around a perimeter of the glass article and extends partially through a thickness of the glass substrate sheet. The method further includes strengthening the glass substrate sheet by a strengthening process and separating the glass article from the glass substrate sheet along the at least one groove such that one or more edges of the glass article are under compressive stress. In another embodiment, a strengthened glass substrate sheet includes an ion exchanged glass having one or more grooves in one or more strengthened surface layers, the one or more grooves defining glass articles.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Ivan A. Cornejo, Gregory Scott Glaesemann, Sinue Gomez, Lisa Anne Moore, Sergio Tsuda, Michael Henry Wasilewski
  • Publication number: 20120048604
    Abstract: Glass interposer panels and methods for forming the same are described herein. The interposer panels include a glass substrate core formed from an ion-exchangeable glass. A first layer of compressive stress may extend from a first surface of the glass substrate into the thickness T of the glass substrate core to a first depth of layer D1. A second layer of compressive stress may be spaced apart from the first layer of compressive stress and extending from a second surface of the glass substrate core into the thickness T of the glass substrate core to a second depth of layer D2. A plurality of through-vias may extend through the thickness T of the glass substrate core. Each through-via is surrounded by an intermediate zone of compressive stress that extends from the first layer of compressive stress to the second layer of compressive stress adjacent to a sidewall of each through-via.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Ivan A. Cornejo, Sinue Gomez, James Micheal Harris, Lisa Anne Moore, Sergio Tsuda
  • Patent number: 8047023
    Abstract: A method for producing a fused silica glass containing titania includes synthesizing particles of silica and titania by delivering a mixture of a silica precursor and a titania precursor to a burner, growing a porous preform by successively depositing the particles on a deposition surface while rotating and translating the deposition surface relative to the burner, and consolidating the porous preform into a dense glass.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: November 1, 2011
    Assignee: Corning Incorporated
    Inventors: Bradford Giles Ackerman, Kenneth Edward Hrdina, Lisa Anne Moore, Nikki Jo Russo, C. Charles Yu
  • Patent number: 7964522
    Abstract: An F-doped silica glass, a process for making the glass, an optical member comprising the glass, and an optical system comprising such optical member. The glass material comprises 0.1-5000 ppm by weight of fluorine. The glass material according to certain embodiments of the present invention has low polarization-induced birefringence, low LIWFD and low induced absorption at 193 nm.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: June 21, 2011
    Assignee: Corning Incorporated
    Inventors: Lisa Anne Moore, Charlene Marie Smith