Patents by Inventor Lisa Biswal

Lisa Biswal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9947918
    Abstract: Embodiments of the present disclosure pertain to porous silicon particulates and anode materials that contain them. In some embodiments, each of the porous silicon particulates include a plurality of macropores, mesopores and micropores such that the micropores and mesopores are within the macropores. The porous silicon particulates also contain: a coating associated with the porous silicon particulates; and a binding material associated with the porous silicon particulates. The binding material can include binders, carbon materials, polymers, metals, additives, carbohydrates, and combinations thereof.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: April 17, 2018
    Assignees: WILLIAM MARSH RICE UNIVERSITY, LOCKHEED MARTIN CORPORATION
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsabaugh
  • Publication number: 20160344016
    Abstract: In some embodiments, the present invention provides methods of preparing porous silicon films and particles by: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution (e.g., hydrofluoric acid solution) to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. The methods of the present invention may also include a step of associating the porous silicon film with a binding material, such as polyacrylonitrile (PAN). The methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to methods of preparing porous silicon particles and anode materials that may be derived from the porous silicon films and porous silicon particles of the present invention.
    Type: Application
    Filed: April 14, 2016
    Publication date: November 24, 2016
    Applicants: William Marsh Rice University, Lockheed Martin Corporation
    Inventors: Sibani Lisa Biswal, Madhuri Thakur, Michael S. Wong, Steven L. Sinsabaugh, Mark Isaacson
  • Publication number: 20160293935
    Abstract: Embodiments of the present disclosure pertain to methods of preparing porous silicon particulates by: (a) electrochemically etching a silicon substrate, where electrochemical etching comprises exposure of the silicon substrate to an electric current density, and where electrochemical etching produces a porous silicon film over the silicon substrate; (b) separating the porous silicon film from the silicon substrate, where the separating comprises a gradual increase of the electric current density in sequential increments; (c) repeating steps (a) and (b) a plurality of times; (d) electrochemically etching the silicon substrate in accordance with step (a) to produce a porous silicon film over the silicon substrate; (e) chemically etching the porous silicon film and the silicon substrate; and (f) splitting the porous silicon film and the silicon substrate to form porous silicon particulates.
    Type: Application
    Filed: May 5, 2016
    Publication date: October 6, 2016
    Applicants: William Marsh Rice University, Lockheed Martin Corporation
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsabaugh
  • Patent number: 9340894
    Abstract: In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: May 17, 2016
    Assignees: William Marsh Rice University, Lockheed Martin Corporation
    Inventors: Sibani Lisa Biswal, Madhuri Thakur, Michael S. Wong, Steven L. Sinsabaugh, Mark Isaacson
  • Publication number: 20140193711
    Abstract: Embodiments of the present disclosure pertain to methods of preparing porous silicon particulates by: (a) electrochemically etching a silicon substrate, where electrochemical etching comprises exposure of the silicon substrate to an electric current density, and where electrochemical etching produces a porous silicon film over the silicon substrate; (b) separating the porous silicon film from the silicon substrate, where the separating comprises a gradual increase of the electric current density in sequential increments; (c) repeating steps (a) and (b) a plurality of times; (d) electrochemically etching the silicon substrate in accordance with step (a) to produce a porous silicon film over the silicon substrate; (e) chemically etching the porous silicon film and the silicon substrate; and (f) splitting the porous silicon film and the silicon substrate to form porous silicon particulates.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicants: Lockheed Martin Corporation, William Marsh Rice University
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsabaugh
  • Publication number: 20130045420
    Abstract: In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 21, 2013
    Applicant: William Marsh Rice University
    Inventors: Sibani Lisa Biswal, Madhuri Thakur, Michael S. Wong, Steven L. Sinsabaugh, Mark Isaacson
  • Publication number: 20130040405
    Abstract: In some embodiments, the present invention provides methods of detecting a molecule in a sample, such as an explosive. In some embodiments, the method comprises: associating the sample with an antigen/binding agent complex; measuring a rate of displacement of the binding agent from the antigen by the molecule in the sample; and correlating the measured rate of displacement to the presence of the molecule in the sample. In some embodiments, the measuring step comprises a determination of a change in frequency of the sample and a change in energy dissipation of the sample over a time interval. In some embodiments, the correlating step comprises a calculation of a ratio of a change in energy dissipation of the sample over a change in frequency of the sample over the time interval. In some embodiments, the method is used to determine the molecule concentration in the sample.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 14, 2013
    Applicants: Lockheed Martin Corporation, William Marsh Rice University
    Inventors: Laura Segatori, Sibani Lisa Biswal, Jinghui Wang, Patricia D. Palena, Michael J. DiMario
  • Publication number: 20120231326
    Abstract: Methods of fabricating porous silicon by electrochemical etching and subsequent coating with a passivating agent process are provided. The coated porous silicon can be used to make anodes and batteries. It is capable of alloying with large amounts of lithium ions, has a capacity of at least 1000 mAh/g and retains this ability through at least 60 charge/discharge cycles. A particular pSi formulation provides very high capacity (3000 mAh/g) for at least 60 cycles, which is 80% of theoretical value of silicon. The Coulombic efficiency after the third cycle is between 95-99%. The very best capacity exceeds 3400 mAh/g and the very best cycle life exceeds 240 cycles, and the capacity and cycle life can be varied as needed for the application.
    Type: Application
    Filed: October 28, 2010
    Publication date: September 13, 2012
    Applicants: LOCKHEED MARTIN CORPORATION, WILLIAM MARSH RICE UNIVERSITY
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsbaugh, Mark J. Isaacson
  • Publication number: 20110213288
    Abstract: This invention generally relates to devices and methods for ex vivo or in vivo transfection of living cells using electroporation, in particular high throughput microfluidic electroporation, and to therapeutic uses of the transfected cells.
    Type: Application
    Filed: September 16, 2010
    Publication date: September 1, 2011
    Applicants: The Board of Regents, The University of Texas System, William Marsh Rice University
    Inventors: Yoonsu Choi, Lawrence J.N. Cooper, Dean A. Lee, Sibani Lisa Biswal, Robert Raphael, Thomas C. Killian
  • Publication number: 20110104128
    Abstract: This invention generally relates to devices and methods for transfection of living cells using electroporation, in particular high throughput microfluidic electroporation, and to therapeutic uses of the transfected cells.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicants: Office of the Board of Regents
    Inventors: Laurence J.N. Cooper, Dean A. Lee, Lisa Biswal, Robert Raphael, Thomas C. Killian
  • Publication number: 20110038836
    Abstract: This invention generally relates to devices and methods for transfection of living cells using electroporation, in particular high throughput microtluidic electroporation, and to therapeutic uses of the transfected cells.
    Type: Application
    Filed: April 23, 2008
    Publication date: February 17, 2011
    Applicant: THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Lawrence J.N. Cooper, Dean A. Lee, Lisa Biswal, Robert Raphael, Thomas C. Killian