Patents by Inventor Lisa K. Lafleur

Lisa K. Lafleur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11173490
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: November 16, 2021
    Assignees: University of Washington, Global Life Sciences Solutions Operations UK Ltd.
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20190009276
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 10, 2019
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Patent number: 10040069
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: August 7, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, Joshua Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20170022550
    Abstract: The present disclosure relates to a sample assessment device. By way of example, the sample assessment device may include a substrate including a sample application region; an amplification region comprising a plurality of amplification reagents; a waste region comprising an entrance fluidically coupled to the amplification region and extending away from the amplification region; and a detection region spaced apart from the amplification region. The sample assessment device may also include a valve coupled to the substrate and configured to separate the amplification region from the detection region in a closed configuration, wherein the amplification region and the valve are positioned on the sample assessment device between the sample application region and the detection region and wherein the sample assessment device is configured to permit lateral flow from the amplification region to the detection region when the valve is in an open configuration.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 26, 2017
    Inventors: David Roger Moore, Matthew Jeremiah Misner, Andrew Arthur Paul Burns, John Bishop, Lisa K. Lafleur, Maxwell Wheeler
  • Publication number: 20110151479
    Abstract: Disclosed is a flow-through membrane assay that takes advantage of a high surface area and rapid transport while allowing individual control over flow rates and times for each step of a multi-step assay. A microfluidic card features channels in communication with a porous membrane, channels on either side of membrane to allow transverse flow across the membrane, capturing a labeled target from the sample by flowing the sample across the membrane, or capturing a target from the sample followed by flowing a reagent containing a label that binds to the target. Fluid can be pushed or pulled through the assay membrane by external control. Air near the membrane is managed by diverting air between fluids to a channel upstream of the assay membrane, venting air between fluids through a hydrophobic membrane upstream of the assay membrane, and/or by venting trapped air through a hydrophobic membrane downstream of the assay membrane.
    Type: Application
    Filed: August 25, 2009
    Publication date: June 23, 2011
    Applicant: University of Washington
    Inventors: Dean Y. Stevens, Lisa K. Lafleur, Berry R. Lutz, Paolo Spicar-Mihalic, Paul Yager