Patents by Inventor Lisa L. MYERS

Lisa L. MYERS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8993818
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A self-sustainable process was designed to reduce the coke by co-feeding sugars/sugar derivatives with the paraffin products from hydrogenation of sugars/sugar derivatives. Paraffins without complete conversion result in products with less aromatics and relatively low density compared with the products directly from zeolite upgrading. Thus, the process is more economically favorable.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: March 31, 2015
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers
  • Patent number: 8809605
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers, Ronald E. Brown
  • Publication number: 20120157742
    Abstract: The present disclosure relates to a process for the conversion of oxygen-containing hydrocarbons into long-chain hydrocarbons suitable for use as a fuel. These hydrocarbons may be derived from biomass, and may optionally be mixed with petroleum-derived hydrocarbons prior to conversion. The process utilizes a catalyst comprising Ni and Mo to convert a mixture comprising oxygenated hydrocarbons into product hydrocarbons containing from ten to thirty carbons. Hydro-conversion can be performed at a significantly lower temperature than is required for when utilizing a hydrotreating catalyst comprising Co and Mo (CoMo), while still effectively removing sulfur compounds (via hydrodesulfurization) to a level of 10 ppm (by weight) or less.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun Bao, Dhananjay B. Ghonasgi, Joseph E. Bares, Sundararajan Uppili, Jianhua Yao, Xiaochun Xu, Edward L. Sughrue, Lisa L. Myers
  • Publication number: 20120095274
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A self-sustainable process was designed to reduce the coke by co-feeding sugars/sugar derivatives with the paraffin products from hydrogenation of sugars/sugar derivatives. Paraffins without complete conversion result in products with less aromatics and relatively low density compared with the products directly from zeolite upgrading. Thus, the process is more economically favorable.
    Type: Application
    Filed: August 22, 2011
    Publication date: April 19, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun BAO, Edward L. SUGHRUE, II, Jianhua YAO, TiePan SHI, Kristi A. FJARE, Lisa L. MYERS
  • Publication number: 20110263916
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Application
    Filed: April 19, 2011
    Publication date: October 27, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun BAO, Edward L. SUGHRUE, II, Jianhua YAO, TiePan SHI, Kristi A. FJARE, Lisa L. MYERS, Ronald E. BROWN
  • Publication number: 20110126449
    Abstract: There is provided a fuel composition comprising petroleum based component and a renewable based component, wherein at least 20% of the compounds in said petroleum based component having boiling point range equal or greater than the boiling point of said renewable based component.
    Type: Application
    Filed: October 29, 2010
    Publication date: June 2, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Xiaochun XU, Yun BAO, Jianhua Yao, Dhananjay B. Ghonasgi, Edward L. SUGHRUE, II, Lisa L. MYERS
  • Publication number: 20110047866
    Abstract: Disclosed is a process for removing solids, metals, phosphorus compounds and other impurities from low quality triglyceride containing feedstock. The final treated triglyceride containing feedstock may be converted to fuel range hydrocarbons via hydrotreating process.
    Type: Application
    Filed: July 20, 2010
    Publication date: March 3, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Yun BAO, Xiaochun XU, Jianhua YAO, Lisa L. MYERS, Dhananjay B. GHONASGI, Edward L. SUGHRUE, Scott A. SCHOLTEN, Kathy A. SWALLOWS, Larry D. SWINNEY