Patents by Inventor Lishun Dai

Lishun Dai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220403263
    Abstract: Described are a process and a system for processing aromatics-rich fraction oil. The process includes: (1) introducing an aromatics-rich fraction oil into a fifth reaction unit for hydrosaturation, followed by fractionation, to provide a first light component and a first heavy component; (2) introducing a deoiled asphalt and an aromatics-comprising stream including the first heavy component into a hydrogen dissolving unit to be mixed with hydrogen, and introducing the mixed material into a first reaction unit for a hydrogenation reaction; (3) fractionating a liquid-phase product from the first reaction unit to provide a second light component and a second heavy component; (41) introducing the second light component into a second reaction unit for reaction; and (42) introducing the second heavy component into a delayed coking unit for reaction; or using the second heavy component as a component of low sulfur ship fuel oil.
    Type: Application
    Filed: October 30, 2020
    Publication date: December 22, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Qinghe YANG, Yanzi JIA, Dawei HU, Chuanfeng NIU, Shuling SUN, Lishun DAI, Zhen WANG, Anpeng HU, Liang REN, Dadong LI
  • Publication number: 20220372385
    Abstract: Described are a process and a system for hydrotreating a deoiled asphalt. The process includes: (2) introducing a deoiled asphalt and an aromatics-containing stream into a first reaction unit for hydrogenation reaction, wherein the first reaction unit comprises a mineral-rich precursor material and/or a hydrogenation catalyst, and the first reaction unit is a fixed bed hydrogenation unit; (21) fractionating the liquid-phase product from the first reaction unit to provide a first light component and a first heavy component; (31) introducing the first light component into a second reaction unit for reaction, to provide a gasoline component, a diesel component and/or a BTX feedstock component; and (32) introducing the first heavy component to a delayed coking unit for reaction; or using the first heavy component as a low sulfur ship fuel oil component.
    Type: Application
    Filed: October 30, 2020
    Publication date: November 24, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Qinghe YANG, Shuling SUN, Dawei HU, Chuanfeng NIU, Yanzi JIA, Lishun DAI, Zhen WANG, Anpeng HU, Liang REN, Dadong LI
  • Patent number: 11427773
    Abstract: Disclosed is a catalytic cracking process for producing isobutane and/or light aromatics in high yield, comprising the steps of: a) providing a catalytic cracking feedstock oil having a polycyclic naphthene content of greater than about 25 wt %; b) subjecting the catalytic cracking feedstock oil to a first catalytic cracking reaction and a second catalytic cracking reaction sequentially under different reaction conditions to obtain a catalytic cracking product; c) separating the resulting catalytic cracking product to obtain a liquefied gas fraction comprising isobutane and a gasoline fraction comprising light aromatics; and d) optionally, recovering isobutane from the liquefied gas fraction and/or recovering light aromatics from the gasoline fraction. The process can enable the production of isobutane and/or light aromatics in high yield.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 30, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Xin Wang, Yuying Zhang, Tao Liu, Xuhui Bai, Lishun Dai, Zhigang Zhang, Jialin Liang, Nan Jiang
  • Patent number: 11365360
    Abstract: A process for converting inferior feedstock oil includes several steps. In step a) the inferior feedstock oil is subjected to a low severity hydrogenation reaction. The reaction product is separated to produce a gas, a hydrogenated naphtha, a hydrogenated diesel and a hydrogenated residual oil. In step b) the hydrogenated residual oil obtained in step a) is subjected to a first catalytic cracking reaction, the reaction product is separated to produce a first dry gas, a first LPG, a first gasoline, a first diesel and a first FCC-gas oil. In step c) the first FCC-gas oil obtained in step b) is subjected to a hydrogenation reaction of gas oil, the reaction product is separated to produce a hydrogenated gas oil, and in step d) the hydrogenated gas oil obtained in step c) is subjected to the first catalytic cracking reaction of step b) or a second catalytic cracking reaction.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: June 21, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Tao Liu, Xin Wang, Lishun Dai, Tian Lan, Hong Nie, Dadong Li
  • Publication number: 20220152534
    Abstract: The present invention provides an oil slurry filter, a filter unit including the oil slurry filter, a multiple-filter system including the oil slurry filter, and a multiple-stage filter system including the oil slurry filter. Due to the use of the filter component of flexible texture in the oil slurry filter of the present invention, the problems that the filter material is easily blocked by high-viscosity colloidal impurities, the regeneration efficiency of the filter is poor and the filtration efficiency is low are solved, and it is possible to make the backwash treatment of the filter residue more convenient and improve the regeneration efficiency of the filter. The present invention also provides a filtering process using the oil slurry filter to ensure long-term stable operation of the oil slurry filtering process.
    Type: Application
    Filed: February 20, 2020
    Publication date: May 19, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, SUN-CENTRAL (SHANGHAI) MARKETING AND SERVICE CO., LTD
    Inventors: Zhihai HU, Yong HAN, Chuanfeng NIU, Lingping WANG, Fa LIU, Tan CHEN, Zhicai SHAO, Jinshan XIAO, Zhonghuo DENG, Shasha LI, Lishun DAI, Wei YE, Qiang FANG, Wenjing XU
  • Publication number: 20220064552
    Abstract: A process for producing light olefins from inferior oils includes the steps of: subjecting an inferior oil to a thermal conversion reaction in the presence of hydrogen to obtain a conversion product; separating the conversion product to obtain a first separated product; separating the first separated product to obtain an upgraded oil and a pitch; subjecting the upgraded oil to hydro-upgrading to obtain a hydro-upgraded oil; separating the hydro-upgraded oil to obtain a hydro-upgraded heavy oil; and subjecting the hydro-upgraded heavy oil to catalytic cracking to obtain a catalytic cracking product comprising a light olefin.
    Type: Application
    Filed: March 2, 2020
    Publication date: March 3, 2022
    Inventors: Huandi HOU, Xiaoli WEI, Jun LONG, Ming DONG, Jiushun ZHANG, Shuandi HOU, Xuefeng CHEN, Jialin LIANG, Jiguang LI, Cuihong WANG, Haiping SHEN, Jianhong GONG, Lishun DAI
  • Patent number: 11078434
    Abstract: Disclosed is a process and system for upgrading low-quality oils. The upgrading process comprises: (1) subjecting a low-quality oil to a conversion reaction in the presence of hydrogen and optionally in the presence of a conversion catalyst to obtain a conversion product, (2) processing the conversion product to obtain a first processed product, wherein the first processed product comprises a specific amount of a special component, and (3) subjecting the first processed product to extraction separation to obtain an upgraded oil and a pitch. The upgrading process and the upgrading system have the advantages of stable operation, high upgrading efficiency, environmental friendliness, low coke yield or high yield of upgraded oil.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 3, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Huandi Hou, Zijun Wang, Haiping Shen, Ming Dong, Lishun Dai, Jianhong Gong, Jiguang Li, Shuhong Zhang, Cuihong Wang, Yucheng She, Yuzhang Wang, Mengying Tao
  • Publication number: 20200283688
    Abstract: Disclosed is a process and system for upgrading low-quality oils. The upgrading process comprises: (1) subjecting a low-quality oil to a conversion reaction in the presence of hydrogen and optionally in the presence of a conversion catalyst to obtain a conversion product, (2) processing the conversion product to obtain a first processed product, wherein the first processed product comprises a specific amount of a special component, and (3) subjecting the first processed product to extraction separation to obtain an upgraded oil and a pitch. The upgrading process and the upgrading system have the advantages of stable operation, high upgrading efficiency, environmental friendliness, low coke yield or high yield of upgraded oil.
    Type: Application
    Filed: September 11, 2017
    Publication date: September 10, 2020
    Inventors: Jun LONG, Huandi HOU, Zijun WANG, Haiping SHEN, Ming DONG, Lishun DAI, Jianhong GONG, Jiguang LI, Shuhong ZHANG, Cuihong WANG, Yucheng SHE, Yuzhang WANG, Mengying TAO
  • Publication number: 20200239791
    Abstract: Disclosed is a catalytic cracking process for producing isobutane and/or light aromatics in high yield, comprising the steps of: a) providing a catalytic cracking feedstock oil having a polycyclic naphthene content of greater than about 25 wt %; b) subjecting the catalytic cracking feedstock oil to a first catalytic cracking reaction and a second catalytic cracking reaction sequentially under different reaction conditions to obtain a catalytic cracking product; c) separating the resulting catalytic cracking product to obtain a liquefied gas fraction comprising isobutane and a gasoline fraction comprising light aromatics; and d) optionally, recovering isobutane from the liquefied gas fraction and/or recovering light aromatics from the gasoline fraction. The process can enable the production of isobutane and/or light aromatics in high yield.
    Type: Application
    Filed: October 22, 2018
    Publication date: July 30, 2020
    Inventors: Youhao XU, Xin WANG, Yuying ZHANG, Tao LIU, Xuhui BAI, Lishun DAI, Zhigan ZHANG, Jialin LIANG, Nan JIANG
  • Publication number: 20190225897
    Abstract: A process for converting inferior feedstock oil includes several steps. In step a) the inferior feedstock oil is subjected to a low severity hydrogenation reaction. The reaction product is separated to produce a gas, a hydrogenated naphtha, a hydrogenated diesel and a hydrogenated residual oil. In step b) the hydrogenated residual oil obtained in step a) is subjected to a first catalytic cracking reaction, the reaction product is separated to produce a first dry gas, a first LPG, a first gasoline, a first diesel and a first FCC-gas oil. In step c) the first FCC-gas oil obtained in step b) is subjected to a hydrogenation reaction of gas oil, the reaction product is separated to produce a hydrogenated gas oil, and in step d) the hydrogenated gas oil obtained in step c) is subjected to the first catalytic cracking reaction of step b) or a second catalytic cracking reaction.
    Type: Application
    Filed: October 17, 2016
    Publication date: July 25, 2019
    Inventors: Youhao XU, Tao LIU, Xin WANG, Lishun DAI, Tian LAN, Hong NIE, Dadong LI
  • Patent number: 9657236
    Abstract: The present invention relates to a catalyst combination for hydrotreating raw oils and a process for hydrotreating raw oils with the catalyst combination. The catalyst combination comprises one or both of at least one hydrogenation protection catalyst I and at least one hydrogenation demetalling catalyst I; at least one hydrogenation demetalling catalyst II; and at least one hydrogenation treatment catalyst III.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: May 23, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PERTROLEUM PROCESSING, SINOPEC
    Inventors: Qinghe Yang, Dawei Hu, Shuling Sun, Jia Liu, Hong Nie, Xinqiang Zhao, Xuefen Liu, Dadong Li, Lishun Dai, Zhicai Shao, Tao Liu
  • Patent number: 9309467
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking ligh
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 12, 2016
    Assignees: China Petroleum and Chemical Corp., Research Institute of Petroleum Processing, Sinopec
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Patent number: 9260667
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 16, 2016
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Patent number: 8696887
    Abstract: A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h?1 and 100 h?1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 15, 2014
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Youhao Xu, Lishun Dai, Longsheng Tian, Shouye Cui, Jianhong Gong, Chaogang Xie, Jiushun Zhang, Jun Long, Zhijian Da, Hong Nie, Jinbiao Guo, Zhigang Zhang
  • Publication number: 20140001090
    Abstract: The present invention relates to a catalyst combination for hydrotreating raw oils and a process for hydrotreating raw oils with the catalyst combination. The catalyst combination comprises one or both of at least one hydrogenation protection catalyst I and at least one hydrogenation demetalling catalyst I; at least one hydrogenation demetalling catalyst II; and at least one hydrogenation treatment catalyst III.
    Type: Application
    Filed: March 29, 2013
    Publication date: January 2, 2014
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Qinghe YANG, Dawei Hu, Shuling Sun, Jia Liu, Hong Nie, Xinqiang Zhao, Xuefen Liu, Dadong Li, Lishun Dai, Zhicai Shao, Tao Liu
  • Patent number: 8597500
    Abstract: A catalytic conversion process to convert inferior feedstock to high quality fuel oil and propylene is disclosed. Inferior feedstock is introduced into first and second reactor zone, wherein first step and second step reactions occur by contacting with catalytic conversion catalyst. Product vapors include fluid catalytic cracking gas oil (FGO) which is introduced into a hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Hydrotreated FGO and/or extracted FGO returns to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics and the raffinate of said FGO is rich in chain alkane and cycloalkane. More particularly, the invention utilizes petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 3, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Youhao Xu, Lishun Dai, Zhigang Zhang, Shouye Cui, Jianhong Gong, Chaogang Xie, Jun Long, Hong Nie, Zhijian Da, Jiushun Zhang, Tao Liu, Anguo Mao
  • Patent number: 8529753
    Abstract: Disclosed is a combined process for hydrotreating and catalytic cracking of residue, wherein the residue, catalytic cracking heavy cycle oil with acidic solid impurity being removed, optional distillate oil and adistillate of catalytic cracking slurry oil from which the acidic solid impurity is removed are fed into residue hydrotreating unit, the hydrogenated residue obtained and optional vacuum gas oil are fed into catalytic cracking unit to obtain various products; the catalytic cracking heavy cycle oil from which the acidic solid impurity is removed is circulated to the residue hydrotreating unit; the catalytic cracking slurry oil is separated by distilling, the distillate of the catalytic cracking slurry oil after removing off the acidic solid impurity is circulated to the residue hydrotreating unit.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: September 10, 2013
    Assignees: Research Institute of Petroleum Processing, Sinopec, China Petroleum & Chemical Corporation
    Inventors: Chuanfeng Niu, Lishun Dai, Yongcan Gao, Dadong Li, Yahua Shi, Hong Nie, Qinghe Yang
  • Publication number: 20130062250
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Inventors: Yongcan GAO, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Publication number: 20110062054
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking ligh
    Type: Application
    Filed: December 19, 2008
    Publication date: March 17, 2011
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Publication number: 20110000818
    Abstract: A catalytic conversion process can convert inferior feedstock to high quality fuel oil and propylene. A inferior feedstock is introduced into first and second reactor zone, wherein the feedstock carry out first step and second step reactions by contacting with catalytic conversion catalyst. Product vapors separate from spent catalyst by gas-solid separation. The spent catalyst is stripped, regenerated by burning off coke and then returns to reactor. The product vapors are introduced into separation system to obtain propylene, gasoline, diesel, fluid catalytic cracking gas oil (FGO) and other products. The FGO is introduced into hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Said hyrotreated FGO and/or extracted FGO return to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics which are good chemical materials.
    Type: Application
    Filed: March 13, 2009
    Publication date: January 6, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING
    Inventors: Youhao Xu, Lishun Dai, Zhigang Zhang, Shouye Cui, Jianhong Gong, Chaogang Xie, Jun Long, Hong Nie, Zhijian Da, Jiushun Zhang, Tao Liu, Anguo Mao