Patents by Inventor Liumin ZOU

Liumin ZOU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11515439
    Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor film. The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 29, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Teruaki Higo, Chikao Okamoto, Naoki Asano, Masamichi Kobayashi, Natsuko Fujiwara, Rihito Suganuma, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou
  • Patent number: 11316061
    Abstract: n-type amorphous semiconductor layers (4) and p-type amorphous semiconductor layers (5) are alternately disposed on the back surface of a semiconductor substrate (1) so as to be separated from each other at a desired interval paralleled with the direction of the surface of the semiconductor substrate (1). An electrode (6) is disposed on the n-type amorphous semiconductor layer (4), and an electrode (7) is disposed on the p-type amorphous semiconductor layer (5). A protective film (8) includes an insulating film, and is disposed on a passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7), so as to be in contact with the passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7).
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: April 26, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takeshi Kamikawa, Masatomi Harada, Toshihiko Sakai, Tokuaki Kuniyoshi, Liumin Zou
  • Patent number: 11227961
    Abstract: There is provided a photoelectric conversion device which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline silicon layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a silicon substrate (12), a first non-crystalline semiconductor layer (20n), a second non-crystalline semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). One electrode (22n) includes first conductive layers (26n, 26p), and second conductive layers (28n, 28p). The first conductive layers (26n, 26p) have a first metal as a main component. The second conductive layers (28n, 28p) contain a second metal which is more likely to be oxidized than the first metal, are formed to be in contact with the first conductive layers (26n, 26p), and are disposed to be closer to the silicon substrate (12) than the first conductive layers (26n, 26p).
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 18, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenji Kimoto, Naoki Koide, Liumin Zou, Masamichi Kobayashi
  • Patent number: 11195965
    Abstract: Wires (22) electrically connecting solar cells (10) include first wires (22a) and second wires (22b). The first wires (22a) are connected to the first-conductivity-type electrodes (12) of a first one of the solar cells (10) and the second-conductivity-type electrodes (13) of a second one of the solar cells 10 that is adjacent to the first one of the solar cells (10). The second wires (22b) are connected to the second-conductivity-type electrodes (13) of the first one of the solar cells (10) and the first-conductivity-type electrodes (12) of the second one of the solar cells (10). The second wires (22b) are electrically separated by holes (21a) extending through both the second wires (22b) and an insulating base member (21).
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: December 7, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshihisa Dotta, Hajime Horinaka, Kohichi Katohno, Liumin Zou, Tetsuyoshi Inoue
  • Publication number: 20210098638
    Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor film. The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Inventors: TERUAKI HIGO, CHIKAO OKAMOTO, NAOKI ASANO, MASAMICHI KOBAYASHI, NATSUKO FUJIWARA, RIHITO SUGANUMA, TOSHIHIKO SAKAI, KAZUYA TSUJINO, LIUMIN ZOU
  • Publication number: 20210050467
    Abstract: n-type amorphous semiconductor layers (4) and p-type amorphous semiconductor layers (5) are alternately disposed on the back surface of a semiconductor substrate (1) so as to be separated from each other at a desired interval paralleled with the direction of the surface of the semiconductor substrate (1). An electrode (6) is disposed on the n-type amorphous semiconductor layer (4), and an electrode (7) is disposed on the p-type amorphous semiconductor layer (5). A protective film (8) includes an insulating film, and is disposed on a passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7), so as to be in contact with the passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7).
    Type: Application
    Filed: October 15, 2020
    Publication date: February 18, 2021
    Inventors: Takeshi Kamikawa, Masatomi Harada, Toshihiko Sakai, Tokuaki Kuniyoshi, Liumin Zou
  • Patent number: 10903379
    Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor film. The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction. Therefore, the photovoltaic device has an improved heat resistance.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 26, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Teruaki Higo, Chikao Okamoto, Naoki Asano, Masamichi Kobayashi, Natsuko Fujiwara, Rihito Suganuma, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou
  • Patent number: 10658526
    Abstract: In a photovoltaic device (1), first amorphous semiconductor portions (102n) and second amorphous semiconductor portions (102p) are provided alternately on one of faces of a semiconductor substrate (101). Each first amorphous semiconductor portion (102n) has at least one first amorphous semiconductor strip (1020n), and each second amorphous semiconductor portion (102p) has at least one second amorphous semiconductor strip (1020p). A plurality of first electrodes (103n) are provided spaced apart from each other on each first amorphous semiconductor strip (1020n), and a plurality of second electrodes (103p) are provided spaced apart from each other on each second amorphous semiconductor strip (1020p).
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: May 19, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masatomi Harada, Kenichi Higashi, Takeshi Kamikawa, Toshihiko Sakai, Tokuaki Kuniyoshi, Kazuya Tsujino, Liumin Zou
  • Patent number: 10516066
    Abstract: A photovoltaic conversion device (10) includes a semiconductor substrate (1), a passivation film (3), n-type amorphous semiconductor strips, p-type amorphous semiconductor strips (5p), and electrodes (7). The passivation film (3) is formed on one of the surfaces of the semiconductor substrate (1). The n- and p-type amorphous semiconductor strips are arranged alternately as viewed along an in-plane direction of the semiconductor substrate (1) (Y-axis direction). The p-type amorphous semiconductor strips (5p) have reduced-thickness regions (51) at some intervals as viewed along the length direction of the p-type amorphous semiconductor strips (5p) (X-axis direction). The n-type amorphous semiconductor strips have a similar structure. The electrodes (7) are provided on the p-type amorphous semiconductor strips (5p), but not in areas where the reduced-thickness regions (51) have a positive curvature r with respect to the length direction of the reduced-thickness regions (51).
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: December 24, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Makoto Higashikawa, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou, Teruaki Higo, Yuta Matsumoto
  • Patent number: 10505064
    Abstract: A photovoltaic device and a photovoltaic module are provided that suppressing diffusion of boron and thereby improving conversion efficiency. A photovoltaic device 10 includes: a semiconductor substrate 1; an intrinsic amorphous semiconductor layer 3 provided on the semiconductor substrate 1; n-type amorphous semiconductor strips 4 containing phosphorus as a dopant; and p-type amorphous semiconductor strips 5 containing boron as a dopant, the n- and p-type amorphous semiconductor strips 4 and 5 being provided alternately on the intrinsic amorphous semiconductor layer 3 as viewed along an in-plane direction. Each n-type amorphous semiconductor strip 4 includes a reduced-thickness region TD(n) on a face thereof adjacent to one of the p-type amorphous semiconductor strips 5. Each p-type amorphous semiconductor strip 5 includes a reduced-thickness region TD(p) on a face thereof adjacent to one of the n-type amorphous semiconductor strips 4.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 10, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tokuaki Kuniyoshi, Kenichi Higashi, Takeshi Kamikawa, Masatomi Harada, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou
  • Patent number: 10355145
    Abstract: A photovoltaic device (1) includes: an i-type amorphous semiconductor layer (102i) formed in contact with one of the surfaces of a semiconductor substrate (101); p-type amorphous semiconductor strips (102p) spaced apart from each other and provided on the i-type amorphous semiconductor layer (102i); and n-type amorphous semiconductor strips (102n) spaced apart from each other and provided on the i amorphous semiconductor layer (102i), each n-type amorphous semiconductor strip (102n) being adjacent to at least one of the p-type amorphous semiconductor strips (102p) as traced along an in-plane direction of the semiconductor substrate (101). The photovoltaic device (1) further includes electrodes (103) as a protection layer formed in contact with the i-type amorphous semiconductor layer (102) between adjacent p-type amorphous semiconductor strips (102p) and between adjacent n-type amorphous semiconductor strips (102n).
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: July 16, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masatomi Harada, Kenichi Higashi, Takeshi Kamikawa, Toshihiko Sakai, Tokuaki Kuniyoshi, Kazuya Tsujino, Liumin Zou
  • Patent number: 10293368
    Abstract: A film-forming method for forming a thin film on a substrate includes a contact step, an external force removal step, and a film-forming step. At the contact step (step B), the substrate 30 and a member 31 in contact with one surface of the substrate is stacked, and the substrate 30 and the member 31 in contact with one surface of the substrate are placed under vacuum while an external force is applied in a direction in which the substrate 30 and the member 31 in contact with one surface of the substrate are stacked. At the external force removal step (step C), the external force is removed at atmospheric pressure or under vacuum. At a film-forming step (step E), a thin film is formed on the one surface or the other surface of the substrate 30.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: May 21, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Toshihiko Sakai, Takeshi Kamikawa, Masatomi Harada, Tokuaki Kuniyoshi, Liumin Zou
  • Publication number: 20190131466
    Abstract: Wires (22) electrically connecting solar cells (10) include first wires (22a) and second wires (22b). The first wires (22a) are connected to the first-conductivity-type electrodes (12) of a first one of the solar cells (10) and the second-conductivity-type electrodes (13) of a second one of the solar cells 10 that is adjacent to the first one of the solar cells (10). The second wires (22b) are connected to the second-conductivity-type electrodes (13) of the first one of the solar cells (10) and the first-conductivity-type electrodes (12) of the second one of the solar cells (10). The second wires (22b) are electrically separated by holes (21a) extending through both the second wires (22b) and an insulating base member (21).
    Type: Application
    Filed: October 23, 2018
    Publication date: May 2, 2019
    Inventors: YOSHIHISA DOTTA, HAJIME HORINAKA, KOHICHI KATOHNO, LIUMIN ZOU, TETSUYOSHI INOUE
  • Publication number: 20190103499
    Abstract: A photovoltaic conversion device (10) includes a semiconductor substrate (1), a passivation film (3), n-type amorphous semiconductor strips, p-type amorphous semiconductor strips (5p), and electrodes (7). The passivation film (3) is formed on one of the surfaces of the semiconductor substrate (1). The n- and p-type amorphous semiconductor strips are arranged alternately as viewed along an in-plane direction of the semiconductor substrate (1) (Y-axis direction). The p-type amorphous semiconductor strips (5p) have reduced-thickness regions (51) at some intervals as viewed along the length direction of the p-type amorphous semiconductor strips (5p) (X-axis direction). The n-type amorphous semiconductor strips have a similar structure. The electrodes (7) are provided on the p-type amorphous semiconductor strips (5p), but not in areas where the reduced-thickness regions (51) have a positive curvature r with respect to the length direction of the reduced-thickness regions (51).
    Type: Application
    Filed: March 17, 2017
    Publication date: April 4, 2019
    Inventors: MAKOTO HIGASHIKAWA, TOSHIHIKO SAKAI, KAZUYA TSUJINO, LIUMIN ZOU, TERUAKI HIGO, YUTA MATSUMOTO
  • Publication number: 20190044018
    Abstract: A photovoltaic device and a photovoltaic module are provided that suppressing diffusion of boron and thereby improving conversion efficiency. A photovoltaic device 10 includes: a semiconductor substrate 1; an intrinsic amorphous semiconductor layer 3 provided on the semiconductor substrate 1; n-type amorphous semiconductor strips 4 containing phosphorus as a dopant; and p-type amorphous semiconductor strips 5 containing boron as a dopant, the n- and p-type amorphous semiconductor strips 4 and 5 being provided alternately on the intrinsic amorphous semiconductor layer 3 as viewed along an in-plane direction. Each n-type amorphous semiconductor strip 4 includes a reduced-thickness region TD(n) on a face thereof adjacent to one of the p-type amorphous semiconductor strips 5. Each p-type amorphous semiconductor strip 5 includes a reduced-thickness region TD(p) on a face thereof adjacent to one of the n-type amorphous semiconductor strips 4.
    Type: Application
    Filed: August 30, 2016
    Publication date: February 7, 2019
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Tokuaki KUNIYOSHI, Kenichi HIGASHI, Takeshi KAMIKAWA, Masatomi HARADA, Toshihiko SAKAI, Kazuya TSUJINO, Liumin ZOU
  • Publication number: 20180190840
    Abstract: In a photovoltaic device (1), first amorphous semiconductor portions (102n) and second amorphous semiconductor portions (102p) are provided alternately on one of faces of a semiconductor substrate (101). Each first amorphous semiconductor portion (102n) has at least one first amorphous semiconductor strip (1020n), and each second amorphous semiconductor portion (102p) has at least one second amorphous semiconductor strip (1020p). A plurality of first electrodes (103n) are provided spaced apart from each other on each first amorphous semiconductor strip (1020n), and a plurality of second electrodes (103p) are provided spaced apart from each other on each second amorphous semiconductor strip (1020p).
    Type: Application
    Filed: February 24, 2016
    Publication date: July 5, 2018
    Applicant: Sharp Kabushiki Kaisha
    Inventors: MASATOMI HARADA, KENICHI HIGASHI, TAKESHI KAMIKAWA, TOSHIHIKO SAKAI, TOKUAKI KUNIYOSHI, KAZUYA TSUJINO, LIUMIN ZOU
  • Publication number: 20180161808
    Abstract: A film-forming method for forming a thin film on a substrate includes a contact step, an external force removal step, and a film-forming step. At the contact step (step B), the substrate 30 and a member 31 in contact with one surface of the substrate is stacked, and the substrate 30 and the member 31 in contact with one surface of the substrate are placed under vacuum while an external force is applied in a direction in which the substrate 30 and the member 31 in contact with one surface of the substrate are stacked. At the external force removal step (step C), the external force is removed at atmospheric pressure or under vacuum. At a film-forming step (step E), a thin film is formed on the one surface or the other surface of the substrate 30.
    Type: Application
    Filed: February 24, 2016
    Publication date: June 14, 2018
    Inventors: TOSHIHIKO SAKAI, TAKESHI KAMIKAWA, MASATOMI HARADA, TOKUAKI KUNIYOSHI, LIUMIN ZOU
  • Publication number: 20180138323
    Abstract: A photovoltaic device (1) includes: an i-type amorphous semiconductor layer (102i) formed in contact with one of the surfaces of a semiconductor substrate (101); p-type amorphous semiconductor strips (102p) spaced apart from each other and provided on the i-type amorphous semiconductor layer (102i); and n-type amorphous semiconductor strips (102n) spaced apart from each other and provided on the i amorphous semiconductor layer (102i), each n-type amorphous semiconductor strip (102n) being adjacent to at least one of the p-type amorphous semiconductor strips (102p) as traced along an in-plane direction of the semiconductor substrate (101). The photovoltaic device (1) further includes electrodes (103) as a protection layer formed in contact with the i-type amorphous semiconductor layer (102) between adjacent p-type amorphous semiconductor strips (102) and between adjacent n-type amorphous semiconductor strips (102n).
    Type: Application
    Filed: February 24, 2016
    Publication date: May 17, 2018
    Inventors: MASATOMI HARADA, KENICHI HIGASHI, TAKESHI KAMIKAWA, TOSHIHIKO SAKAI, TOKUAKI KUNIYOSHI, KAZUYA TSUJINO, LIUMIN ZOU
  • Publication number: 20180069139
    Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction. Therefore, the photovoltaic device has an improved heat resistance.
    Type: Application
    Filed: March 7, 2016
    Publication date: March 8, 2018
    Inventors: TERUAKI HIGO, CHIKAO OKAMOTO, NAOKI ASANO, MASAMICHI KOBAYASHI, NATSUKO FUJIWARA, RIHITO SUGANUMA, TOSHIHIKO SAKAI, KAZUYA TSUJINO, LIUMIN ZOU
  • Publication number: 20170338365
    Abstract: n-type amorphous semiconductor layers (4) and p-type amorphous semiconductor layers (5) are alternately disposed on the back surface of a semiconductor substrate (1) so as to be separated from each other at a desired interval paralleled with the direction of the surface of the semiconductor substrate (1). An electrode (6) is disposed on the n-type amorphous semiconductor layer (4), and an electrode (7) is disposed on the p-type amorphous semiconductor layer (5). A protective film (8) includes an insulating film, and is disposed on a passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7), so as to be in contact with the passivation film (3), the n-type amorphous semiconductor layer (4), the p-type amorphous semiconductor layer (5), and the electrodes (6, 7).
    Type: Application
    Filed: October 23, 2015
    Publication date: November 23, 2017
    Applicant: Sharp Kabushiki Kaisha
    Inventors: TAKESHI KAMIKAWA, MASATOMI HARADA, TOSHIHIKO SAKAI, TOKUAKI KUNIYOSHI, LIUMIN ZOU