Patents by Inventor Liv JENSEN
Liv JENSEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240317818Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: ApplicationFiled: June 5, 2024Publication date: September 26, 2024Applicant: Roche Sequencing Solutions, Inc.Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
-
Patent number: 12037366Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: GrantFiled: August 15, 2023Date of Patent: July 16, 2024Assignee: Roche Sequencing Solutions, Inc.Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew Dipietro, Dhruti Dalal
-
Publication number: 20240010688Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: ApplicationFiled: August 15, 2023Publication date: January 11, 2024Applicant: Roche Sequencing Solutions, Inc.Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander Yang, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
-
Patent number: 11767348Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: GrantFiled: July 10, 2020Date of Patent: September 26, 2023Assignee: Roche Sequencing Solutions, Inc.Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew Dipietro, Dhruti Dalal
-
Publication number: 20200392191Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: ApplicationFiled: July 10, 2020Publication date: December 17, 2020Applicant: Roche Sequencing Solutions, Inc.Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS, Matthew DIPIETRO, Dhruti DALAL
-
Patent number: 10752658Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: GrantFiled: September 20, 2016Date of Patent: August 25, 2020Assignee: ROCHE SEQUENCING SOLUTIONS, INC.Inventors: Cynthia Cech, Tim Craig, Christos Tzitzilonis, Alexander Yang, Liv Jensen, Charlotte Yang, Corissa Harris, Matthew DiPietro, Dhruti Dalal
-
Publication number: 20180362594Abstract: The present disclosure provides variant OmpG polypeptides, compositions comprising the OmpG variant polypeptides, and methods for using the variant OmpG polypeptides as nanopores for determining the sequence of single stranded nucleic acids. The variant OmpG nanopores reduce the ionic current noise versus the parental OmpG polypeptide from which they are derived and thereby enable sequencing of polynucleotides with single nucleotide resolution. The reduced ionic current noise also provides for the use of these OmpG nanopore variants in other single molecule sensing applications, e.g., protein sequencing.Type: ApplicationFiled: September 20, 2016Publication date: December 20, 2018Applicant: GENIA TECHNOLOGIES, INC.Inventors: Cynthia CECH, Tim CRAIG, Christos TZITZILONIS, Alexander YANG, Liv JENSEN, Charlotte YANG, Corissa HARRIS