Patents by Inventor Liwei Lin

Liwei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170215846
    Abstract: Medical devices configured to direct sound waves to a body tissue of a subject are provided. The medical device includes a housing and a curved piezoelectric transducer, where the curved piezoelectric transducer is configured to direct sound waves produced by the curved piezoelectric transducer to the body tissue of the subject. Also provided are methods of directing sound waves to a body tissue of a subject using the subject medical devices. The subject medical devices and methods find use in a variety of applications where the treatment of a body tissue of a subject with sound waves is desired.
    Type: Application
    Filed: January 16, 2015
    Publication date: August 3, 2017
    Inventors: Firas SAMMOURA, Sina AKHBARI, Liwei LIN
  • Publication number: 20170170383
    Abstract: Curved piezoelectric transducers are provided. The curved piezoelectric transducer includes a substrate, a curved support layer having a peripheral portion in contact with the substrate, and a curved piezoelectric element disposed on the curved support layer. Methods of making the curved piezoelectric transducers are also provided. The curved piezoelectric transducers, devices and methods find use in a variety of applications, including devices, such as electronics devices, having one or more (e.g., an array) of the curved piezoelectric transducers on a substrate.
    Type: Application
    Filed: January 16, 2015
    Publication date: June 15, 2017
    Inventors: Firas Sammoura, Sina Akhbari, Liwei Lin
  • Patent number: 9284186
    Abstract: After a TEOS oxide film is formed on the surface of a semiconductor device, a PSG film and an SiN film, which have air permeability, are formed on the surface of the TEOS oxide film. Thereafter, a Poly-Si film is formed thereon. A sacrifice layer is removed by a gaseous HF that passes through the PSG film, the SiN film, and the Poly-Si film, and then, the uppermost layer is covered with a Poly-Si/SiC film. A chip scale package having a thin-film hollow-seal structure can be realized on the semiconductor element.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: March 15, 2016
    Assignees: Kabushiki Kaisha Toshiba, The Regents of the University of California
    Inventors: Hiroshi Yamada, Hideyuki Funaki, Kazuhiro Suzuki, Kazuhiko Itaya, Armon Mahajerin, Kevin Limkrailassiri, Liwei Lin
  • Publication number: 20150303001
    Abstract: A method to a fabricate high surface area, high performance supercapacitor includes include applying a metal layer to at least a portion of a nanostructure; after applying the metal layer, oxidizing the metal layer; applying a plurality of additional metal layers onto a previously oxidized metal layer; and after applying each additional metal layer, oxidizing the additional metal layer prior to applying a successive additional metal layer. The metal layers may include a composition comprising at least one metal, the at least one metal selected from the group consisting of ruthenium, titanium, manganese, vanadium, iron, tin, cobalt and nickel. Optionally, each of the additional metal layers may be applied using atomic layering deposition (ALD).
    Type: Application
    Filed: January 21, 2015
    Publication date: October 22, 2015
    Inventors: Roseanne Warren, Firas Sammoura, Liwei Lin
  • Patent number: 8789418
    Abstract: Disclosed herein is an inertial sensor. The inertial sensor includes: a plurality of driving masses; support bodies connecting a connection bridge so as to support the driving masses; a connection bridge connecting the plurality of driving masses and connecting the plurality of driving masses with the support bodies; and an electrode pattern part including driving electrodes simultaneously driving the driving masses and sensing electrode detecting axial Coriolis force of each of the driving masses.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Woon Kim, Liwei Lin, Minyao Mao, Won Kyu Jeung
  • Patent number: 8739628
    Abstract: An inertial sensor includes a plate-like substrate layer, a mass body, a support frame, a limit stop extending in the central direction of the mass body from the support frame, and a detection unit detecting the displacement of the displacement part. The inertial sensor adopts the limit stop limiting the downward displacement of the mass body to prevent the support portion of the mass body from being damaged.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd
    Inventors: Jong Woon Kim, Liwei Lin, Minyao Mao, Heung Woo Park
  • Publication number: 20140128359
    Abstract: The invention relates to N-heterocyclic substituent-containing antibiotics, their preparation, and their use. Disclosed are sodium and potassium salts of 7-(?-((N,N?-diisopropylamidino)thio)acetylamino)-3-(((1,2,5,6-tetrahydro-2-methyl-5,6-diox o-1,2,4-triazin-3-yl)thio)methyl) cephalosporanic acid as presented by the general structure (I), their preparation, and their use. The antibiotics of the invention can be used to treat diseases caused by Gram-positive or Gram-negative bacteria such as septicaemia, gastrointestinal tract infection, and urinary tract infection. They have increased half-life in blood and lowered toxicity. They can reduce the frequency of drug use and lower medical treatment costs. They have improved stability and can be stored at ambient temperatures. The method of the invention is simple, and it produces high purity products which can meet the requirements of clinical use.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicants: GUANGZHOU PHARMACEUTICAL INDUSTRIAL RESEARCH INSTI, GUANGZHOU BAIYUNSHAN PHARMACEUTICAL CO., LTD. GUANGZHOU BAIYUNSHAN PHARMACEUTICAL FACTORY
    Inventors: Mao Chen, Shaoxuan Zhu, Xuebin Liu, Lizhen Zheng, Liwei Lin, Shuwen Xu, Yuping Wang, Wei Yang, Yunfeng Li, Fang Ye, Xiaona Zhang
  • Publication number: 20140084392
    Abstract: After a TEOS oxide film is formed on the surface of a semiconductor device, a PSG film and an SiN film, which have air permeability, are formed on the surface of the TEOS oxide film. Thereafter, a Poly-Si film is formed thereon. A sacrifice layer is removed by a gaseous HF that passes through the PSG film, the SiN film, and the Poly-Si film, and then, the uppermost layer is covered with a Poly-Si/SiC film. A chip scale package having a thin-film hollow-seal structure can be realized on the semiconductor element.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventors: Hiroshi Yamada, Hideyuki Funaki, Kazuhiro Suzuki, Kazuhiko Itaya, Armon Mahajerin, Kevin Limkrailassiri, Liwei Lin
  • Publication number: 20130081465
    Abstract: Disclosed herein is an inertial sensor. The inertial sensor includes: a plurality of driving masses; support bodies supporting the driving masses so as to freely move in a state in which the driving masses float; a connection bridge connecting the plurality of driving masses and connecting the plurality of driving masses with the support bodies; and an electrode pattern part including driving electrodes simultaneously driving the driving masses and sensing electrode detecting axial Coriolis force of each of the driving masses.
    Type: Application
    Filed: August 22, 2012
    Publication date: April 4, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jong Woon Kim, Liwei Lin, Minyao Mao, Won Kyu Jeung
  • Patent number: 8294264
    Abstract: An under-bump metallization (UBM) structure for a semiconductor device is provided. The UBM structure has a center portion and extensions extending out from the center portion. The extensions may have any suitable shape, including a quadrangle, a triangle, a circle, a fan, a fan with extensions, or a modified quadrangle having a curved surface. Adjacent UBM structures may have the respective extensions aligned or rotated relative to each other. Flux may be applied to a portion of the extensions to allow an overlying conductive bump to adhere to a part of the extensions.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Wang, Chi-Chun Hsieh, An-Jhih Su, Hsien-Wei Chen, Shin-Puu Jeng, Liwei Lin
  • Publication number: 20120152020
    Abstract: Disclosed herein is an inertial sensor. There is provided an inertial sensor 100, including: a plate-like substrate layer 110, a mass body 130, a post 140, a support part 150 extending in the central direction of the mass body 130 from the post 140, and a detection unit 170 detecting the displacement of the displacement part 113. The inertial sensor adopts the support part 150 limiting the downward displacement of the mass body 130 to prevent the support portion of the mass body 130 from being damaged.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 21, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jong Woon Kim, Liwei Lin, Minyao Mao, Heung Woo Park
  • Publication number: 20110241201
    Abstract: An under-bump metallization (UBM) structure for a semiconductor device is provided. The UBM structure has a center portion and extensions extending out from the center portion. The extensions may have any suitable shape, including a quadrangle, a triangle, a circle, a fan, a fan with extensions, or a modified quadrangle having a curved surface. Adjacent UBM structures may have the respective extensions aligned or rotated relative to each other. Flux may be applied to a portion of the extensions to allow an overlying conductive bump to adhere to a part of the extensions.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Wang, Chi-Chun Hsieh, An-Jhih Su, Hsien-Wei Chen, Shin-Puu Jeng, Liwei Lin
  • Publication number: 20110118462
    Abstract: The invention relates to N-heterocyclic substituent-containing antibiotics, their preparation, and their use. Disclosed are sodium and potassium salts of 7-(?-((N,N?-diisopropylamidino)thio)acetylamino)-3-(((1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-1,2,4-triazin-3-yl)thio)methyl) cephalosporanic acid as presented by the general structure (I), their preparation, and their use. The antibiotics of the invention can be used to treat diseases caused by Gram-positive or Gram-negative bacteria such as septicaemia, gastrointestinal tract infection, and urinary tract infection. They have increased half-life in blood and lowered toxicity. They can reduce the frequency of drug use and lower medical treatment costs. They have improved stability and can be stored at ambient temperatures. The method of the invention is simple, and it produces high purity products which can meet the requirements of clinical use.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Applicants: GUANGZHOU BAIYUNSHAN PHARMACEUTICAL CO., LTD. GUANGZHOU BAIYUNSHAN PHARMACEUTICAL FACTORY, GUANGZHOU PHARMACEUTICAL INDUSTRIAL RESEARCH INSTI
    Inventors: Mao CHEN, Shaoxuan Zhu, Xuebin Liu, Lizhen Zheng, Liwei Lin, Shuwen Xu, Yuping Wang, Wei Yang, Yunfeng Li, Fang Ye, Xiaona Zhang
  • Publication number: 20100238085
    Abstract: The present invention discloses a waveguide antenna structure and a method of manufacture. The waveguide antenna structure can include a non-metallic substrate having a waveguide channel extending along a first direction and an inlet channel extending along a second direction. The inlet channel intersects with the waveguide channel and both channels are at least partially coated with a metallic material. The waveguide channel can have a generally U-shaped cross-section with an open side that is at partially enclosed by a slot plate that is attached to the non-metallic substrate.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., University of California, Berkeley
    Inventors: Michael Yiin-kuen Fuh, Alexandros Margomenos, Liwei Lin
  • Patent number: 7785415
    Abstract: Systems and methods for local synthesis of silicon nanowires and carbon nanotubes, as well as electric field assisted self-assembly of silicon nanowires and carbon nanotubes, are described. By employing localized heating in the growth of the nanowires or nanotubes, the structures can be synthesized on a device in a room temperature chamber without the device being subjected to overall heating. The method is localized and selective, and provides for a suspended microstructure to achieve the thermal requirement for vapor deposition synthesis, while the remainder of the chip or substrate remains at room temperature. Furthermore, by employing electric field assisted self-assembly techniques according to the present invention, it is not necessary to grow the nanotubes and nanowires and separately connect them to a device. Instead, the present invention provides for self-assembly of the nanotubes and nanowires on the devices themselves, thus providing for nano- to micro-integration.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 31, 2010
    Assignee: The Regents of the University of California
    Inventors: Liwei Lin, Ongi Englander, Dane Christensen
  • Publication number: 20100214185
    Abstract: A plastic, waveguide-fed, horn antenna is manufactured using a three-dimensional (3D), polymeric micro hot embossing process. Two cavity resonators may be designed to reduce the impedance mismatch between the pyramidal horn antenna and the feeding waveguide. The waveguide-fed antenna may be fabricated using a self-aligned 3D plastic hot embossing process followed by a selective electroplating and sealing process to coat an approximately 8 ?m-thick gold layer around the internal surfaces of the system. As such, this plastic, low-cost manufacturing process may be used to replace the expensive metallic components for millimeter-wave systems and provides a scalable and integrated process for manufacturing an array of antenna.
    Type: Application
    Filed: November 1, 2007
    Publication date: August 26, 2010
    Applicant: The Regents of the University of California
    Inventors: Firas Sammoura, Liwei Lin
  • Publication number: 20100181648
    Abstract: Systems and methods for local synthesis of silicon nanowires and carbon nanotubes, as well as electric field assisted self-assembly of silicon nanowires and carbon nanotubes, are described. By employing localized heating in the growth of the nanowires or nanotubes, the structures can be synthesized on a device in a room temperature chamber without the device being subjected to overall heating. The method is localized and selective, and provides for a suspended microstructure to achieve the thermal requirement for vapor deposition synthesis, while the remainder of the chip or substrate remains at room temperature. Furthermore, by employing electric field assisted self-assembly techniques according to the present invention, it is not necessary to grow the nanotubes and nanowires and separately connect them to a device. Instead, the present invention provides for self-assembly of the nanotubes and nanowires on the devices themselves, thus providing for nano- to micro-integration.
    Type: Application
    Filed: November 14, 2007
    Publication date: July 22, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Liwei Lin, Ongi Englander, Dane Christensen
  • Patent number: 7728701
    Abstract: An actively tunable waveguide-based iris filter having a first part including a first portion of a deformable iris filter cavity having an inlet and an outlet; a second part operatively coupled with the first part and including a second portion of the deformable iris filter cavity having a deformable membrane operatively coupled with the first portion of a deformable iris filter cavity; the first portion and the second portion together forming the deformable iris filter cavity of the tunable waveguide-based iris filter; and means for moving the deformable membrane, whereby movement of the deformable membrane changes the geometry of the deformable iris filter cavity for causing a change in the frequency of a signal being filtered by the filter. The tunable filter is fabricated using a MEMS-based process including a plastic micro embossing process and a gold electroplating process. Prototype filters were fabricated and measured with bandwidth of 4.05 GHz centered at 94.79 GHz with a minimum insertion loss of 2.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: June 1, 2010
    Assignee: Regents of the University of California
    Inventors: Liwei Lin, Firas Sammoura
  • Patent number: 7452800
    Abstract: A bonding technique suitable for bonding a non-metal body, such as a silicon MEMS sensor, to a metal surface, such a steel mechanical component is rapid enough to be compatible with typical manufacturing processes, and avoids any detrimental change in material properties of the metal surface arising from the bonding process. The bonding technique has many possible applications, including bonding of MEMS strain sensors to metal mechanical components. The inventive bonding technique uses inductive heating of a heat-activated bonding agent disposed between metal and non-metal objects to quickly and effectively bond the two without changing their material properties. Representative tests of silicon to steel bonding using this technique have demonstrated excellent bond strength without changing the steel's material properties.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: November 18, 2008
    Assignee: The Regents of the University of California
    Inventors: Brian D. Sosnowchik, Liwei Lin, Albert P. Pisano
  • Patent number: 7342346
    Abstract: A microfabricated actuator of the vertical comb-drive (AVC) type or staggered vertical comb-drive type for torsional or linear applications includes torsion springs which permit self-aligned deformation of the device (micromirror) structure of the actuator through the heating of the torsional springs to plasticity. The torsional springs can include perpendicular-beam springs or double folded beams which allow axial movement of the spring when heated. Heating of the springs can be by bulk heating of the actuator structure or by Joule heating to the torsional springs by passing an electrical current therethrough.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 11, 2008
    Assignee: The Regents of the University of California
    Inventors: Jongbaeg Kim, Liwei Lin