Patents by Inventor Lixin Zheng

Lixin Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240106013
    Abstract: Embodiments of this application provide a testing apparatus, configured to test a battery and including a test body and a first door body. The test body may include an accommodating cavity for accommodating the battery, and an opening. The opening may communicate with the accommodating cavity, and the first door body may be connected to the opening and capable of moving relative to the opening. The first door body may have a first state and a second state; in the first state, the first door body may block a part of the opening; and in the second state, the first door body may seal the opening.
    Type: Application
    Filed: July 7, 2023
    Publication date: March 28, 2024
    Applicant: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Keyu RUAN, Shaoteng REN, Lixin GUO, Hongyu ZHENG, Fan YANG
  • Patent number: 11866827
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 9, 2024
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Publication number: 20220098738
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 31, 2022
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Patent number: 11198940
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Grant
    Filed: October 5, 2019
    Date of Patent: December 14, 2021
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Publication number: 20210038685
    Abstract: Disclosed is a protein comprising no more than three human autoantigenic proteins, wherein a first human autoantigenic protein comprises a truncated myelin oligodendrocyte glycoprotein (MOG) amino acid sequence, a second human autoantigenic protein comprises a myelin basic protein (MBP) amino acid sequence, and a third human autoantigenic protein comprises a truncated proteolipid protein (PLP) amino acid sequence. Also disclosed are related nucleic acids, pharmaceutical compositions, methods of treating a demyelinating disease, and methods of producing the proteins.
    Type: Application
    Filed: July 21, 2020
    Publication date: February 11, 2021
    Inventors: Michael J. Lenardo, Jian Li, Lixin Zheng, Jae W. Lee, Wei Lu
  • Patent number: 10759838
    Abstract: Disclosed is a protein comprising no more than three human autoantigenic proteins, wherein a first human autoantigenic protein comprises a truncated myelin oligodendrocyte glycoprotein (MOG) amino acid sequence, a second human autoantigenic protein comprises a myelin basic protein (MBP) amino acid sequence, and a third human autoantigenic protein comprises a truncated proteolipid protein (PLP) amino acid sequence. Also disclosed are related nucleic acids, pharmaceutical compositions, methods of treating a demyelinating disease, and methods of producing the proteins.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: September 1, 2020
    Assignee: The United States of America, as represented by the Secretary, Department of Health & Human Services
    Inventors: Michael J. Lenardo, Jian Li, Lixin Zheng, Jae W. Lee, Wei Lu
  • Publication number: 20200048771
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: October 5, 2019
    Publication date: February 13, 2020
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Patent number: 10497672
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 3, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Patent number: 10494720
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 3, 2019
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Patent number: 10238587
    Abstract: An improved erasable tattoo ink and a method and apparatus for removing tattoos using an energy transfer photodisruptive mechanism whereby efficiency of the transfer of energy from a low energy light source to a higher energy donor and then to a tattoo pigment molecule for photodecomposition of the ink color pigmentation is optimized.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: March 26, 2019
    Inventors: Cody Youngbull, Lixin Zheng
  • Publication number: 20180114775
    Abstract: Active LEDs have a control transistor in series with an LED and have a top electrode, a bottom electrode, and a control electrode. The active LEDs are microscopic and dispersed in an ink. A substrate has column lines, and the active LEDs are printed at various pixel locations so the bottom electrodes contact the column lines. A hydrophobic mask defines the pixel locations. Due to the printing process, there are different numbers of active LEDs in the various pixel locations. Row lines and control lines contact the top and control electrodes so that the active LEDs in each single pixel location are connected in parallel. If the LEDs emit blue light, red and green phosphors are printed over various pixel locations to create an ultra-thin color display. Any active LED may be addressed using row and column addressing, and the brightness may be controlled using the control lines.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 26, 2018
    Inventors: William Johnstone Ray, Mark David Lowenthal, Richard Austin Blanchard, Lixin Zheng, Xiaorong Cai, Bradley S. Oraw
  • Publication number: 20180105566
    Abstract: Disclosed is a protein comprising no more than three human autoantigenic proteins, wherein a first human autoantigenic protein comprises a truncated myelin oligodendrocyte glycoprotein (MOG) amino acid sequence, a second human autoantigenic protein comprises a myelin basic protein (MBP) amino acid sequence, and a third human autoantigenic protein comprises a truncated proteolipid protein (PLP) amino acid sequence. Also disclosed are related nucleic acids, pharmaceutical compositions, methods of treating a demyelinating disease, and methods of producing the proteins.
    Type: Application
    Filed: March 9, 2016
    Publication date: April 19, 2018
    Inventors: Michael J. Lenardo, Jian Li, Lixin Zheng, Jae W. Lee, Wei Lu
  • Publication number: 20170256669
    Abstract: A PV panel is manufactured using a monolayer of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The spheres are embedded in an uncured aluminum-containing layer on an aluminum foil substrate in a roll-to-roll process, and the aluminum-containing layer is heated to anneal the aluminum-containing layer as well as p-dope the bottom surface of the spheres. The diffusion of the p-type dopants also creates a back surface field in the spheres to improve efficiency. A dielectric layer is formed, and a phosphorus-containing layer is deposited over the spheres to dope the top surface n-type, forming a pn junction. The phosphorus layer is then removed. A conductor is deposited to contact the top surface. Conformal, index-graded lenses are then formed over each of the spheres to form a thin and flexible PV panel.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 7, 2017
    Inventors: Tricia A. Youngbull, Lixin Zheng, Vera N. Lockett
  • Publication number: 20170014317
    Abstract: An improved erasable tattoo ink and a method and apparatus for removing tattoos using an energy transfer photodisruptive mechanism whereby efficiency of the transfer of energy from a low energy light source to a higher energy donor and then to a tattoo pigment molecule for photodecomposition of the ink color pigmentation is optimized.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 19, 2017
    Applicant: Excelsior Nanotech Corporation
    Inventors: Cody Youngbull, Lixin Zheng
  • Patent number: 9490407
    Abstract: A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: November 8, 2016
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Lixin Zheng
  • Patent number: 9365659
    Abstract: An improved system for energy transfer photopolymerization which optimizes the transfer efficiency of energy from a low energy light source to a higher energy donor and then to a polymerization initiator for the polymerization of a monomer material. The energy transfer efficiency is optimized by introducing stably miscible surface treated upconverting nanocrystal donors into a monomer matrix for near infrared to blue and ultraviolet upconversion and resonantly coupling the energy stored in the donor to the initiator via Förster Resonance Energy Transfer (FRET).
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: June 14, 2016
    Assignee: Excelsior Nanotech Corporation
    Inventors: Cody Youngbull, Lixin Zheng
  • Publication number: 20160153092
    Abstract: An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
    Type: Application
    Filed: February 9, 2016
    Publication date: June 2, 2016
    Inventors: Mark David Lowenthal, Mark Lewandowski, Jeffrey Baldridge, Lixin Zheng, David Michael Chesler
  • Publication number: 20160141471
    Abstract: A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: William Johnstone Ray, Mark David Lowenthal, Lixin Zheng
  • Patent number: 9281298
    Abstract: A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: March 8, 2016
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Lixin Zheng
  • Publication number: 20150228631
    Abstract: A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 13, 2015
    Inventors: William Johnstone Ray, Mark David Lowenthal, Lixin Zheng