Patents by Inventor Lizhi Liu

Lizhi Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951618
    Abstract: A multi-procedure integrated automatic production line for hard alloy blades under robot control is provided. The production line includes a rail-guided robot. A cutter passivation device and a blade cleaning and drying device are arranged on one side of the rail-guided robot. A blade-coating transfer table, a blade coating device, a blade boxing transfer table, a blade-tooling dismounting device and a blade boxing device are sequentially arranged on another side of the rail-guided robot. The blade-tooling dismounting device is arranged on one side of the blade boxing transfer table. The production line further includes squirrel-cage toolings for carrying the blades. The squirrel-cage tooling that are loaded with the blades can run among the cutter passivation device, the blade cleaning and drying device, the blade-coating transfer table and the blade boxing transfer table. The blades after being treated through the blade-tooling dismounting device are sent to the blade boxing device.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: April 9, 2024
    Assignees: Qingdao University of Technology, Ningbo Sanhan Alloy Material Co., Ltd.
    Inventors: Changhe Li, Teng Gao, Liang Luo, Lizhi Tang, Yanbin Zhang, Weixi Ji, Binhui Wan, Shuo Yin, Huajun Cao, Bingheng Lu, Xin Cui, Mingzheng Liu, Jie Xu, Huiming Luo, Haizhou Xu, Min Yang, Huaping Hong, Yuying Yang, Haogang Li, Wuxing Ma, Shuai Chen
  • Patent number: 11466151
    Abstract: A polyester composition includes a first polyester selected from one or more of aliphatic-aromatic copolyesters, which is a copolymer comprising repeating units A as shown in formula (I) and repeating units B as shown in formula (II), in which m is an integer of 2 to 10 and n is an integer of 2 to 8; p is an integer of 2 to 10; and m, n and p are the same or different from each other. Optionally, the polyester composition has a second polyester. The polyester composition includes at least two polyesters. The polyester composition can be used in shape memory materials, 3D print wires, heat shrinkable sleeves, functional layers, medical limb immobilization braces, heat shrinkable thin films, nonwoven fabrics, elastic fibers, etc.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 11, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Cui Zheng, Guixiang Zhu, Lizhi Liu, Wei Zhang, Xuerong Yao, Minqiao Ren, Ling Han, Yi Ren, Nan Chen, Ying Shi
  • Publication number: 20220251360
    Abstract: The present disclosure provides a composition. In an embodiment, the composition includes a non-irradiated ethylene/propylene/non-conjugated polyene terpolymer (nr-terpolymer) and a branched ethylene/propylene/non-conjugated polyene terpolymer (b-terpolymer). The b-terpolymer has: (A) a Mooney viscosity (ML 1+4 @ 125° C.) from 35 MU to 120 MU; (B) a rheology ratio from 55 to 110; and (C) a phase angle ? from 20° to 39°.
    Type: Application
    Filed: June 18, 2020
    Publication date: August 11, 2022
    Inventors: Santosh S. Bawiskar, Guang Ming Li, Tianzi Huang, Lizhi Liu, Xiaosong Wu
  • Patent number: 11376833
    Abstract: A method to produce a tile comprising at least the following layered sections: a wear layered section, a decor layered section and a base layered section; and wherein the wear layered section comprises the following: A) a compositional layer A formed from a composition A comprising at least one olefin-based polymer; wherein the decor layered section comprises the following: B1) a compositional layer B1 formed from a composition B1 comprising a propylene-based polymer; B2) a compositional layer B2 formed from a composition B2 comprising an olefin-based polymer; wherein the base layered section comprises the following: C) a compositional layer C formed from a composition C comprising an olefin-based polymer; wherein the method comprises the following step(s): i) heat laminating compositional layer A to compositional layer B1, at a temperature T1?140° C.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: July 5, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Yushan Hu, Ronald J. Weeks, Mark T. Jablonka, Lizhi Liu
  • Patent number: 11053385
    Abstract: A polyester composition includes polybutylene terephthalate and an aliphatic-aromatic copolyester. Based on the total weight of the polybutylene terephthalate and the aliphatic-aromatic copolyester, the content of the polybutylene terephthalate is from 50 to 99% by weight, and the content of the aliphatic-aromatic copolyester is from 1 to 50% by weight. Further, a method for preparing such a polyester composition and a toughened composite material prepared therefrom. The polyester composition has an elongation at break of up to 230% or more, and an improved toughness without substantial loss of strength.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: July 6, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, Beijing Research Institute of Chemical Industry, China Petrolium & Chemical Corporation
    Inventors: Cui Zheng, Guixiang Zhu, Lizhi Liu, Wei Zhang
  • Patent number: 11029601
    Abstract: A method for producing a patterned silicone layer; said method comprising steps of: (a) depositing on a substrate a composition comprising: (i) a polysiloxane comprising alkenyl groups, (ii) a silane crosslinker comprising silicon-hydrogen bonds, (iii) a hydrosilylation catalyst, and (iv) a photolatent amine generator, to form an uncured resin; (b) exposing the uncured resin to ultraviolet light or electron beam irradiation through a mask to produce a patterned resin; (c) heating the patterned resin; and (e) removing at least a part of the uncured portion of the patterned resin to produce a final patterned silicone layer.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: June 8, 2021
    Assignee: Dow Silicones Corporation
    Inventors: Lizhi Liu, Peng-Fei Fu
  • Publication number: 20210129513
    Abstract: A method to produce a tile comprising at least the following layered sections: a wear layered section, a décor layered section and a base layered section; and wherein the wear layered section comprises the following: A) a compositional layer A formed from a composition A comprising at least one olefm-based polymer; wherein the décor layered section comprises the following: B1) a compositional layer B1 formed from a composition B1 comprising a propylene-based polymer; B2) a compositional layer B2 formed rl from a composition B2 comprising an olefm-based polymer; wherein the base layered section comprises the following: C) a compositional layer C formed from a composition C comprising an olefin-based polymer; wherein the method comprises the following step(s): i) heat laminating compositional layer A to compositional layer B1, at a temperature T1?140° C.
    Type: Application
    Filed: August 16, 2018
    Publication date: May 6, 2021
    Inventors: Yushan Hu, Ronald J. Weeks, Mark T. Jablonka, Lizhi Liu
  • Patent number: 10934391
    Abstract: A polyester composition, includes an aliphatic polyester and an aliphatic-aromatic copolyester. The aliphatic-aromatic copolyester is a copolymer having a repeating unit A and a repeating unit B. The preparation method for the polyester composition includes the steps of mixing all the components having the aliphatic polyester and the aliphatic-aromatic copolyester, and subjecting the resulting mixture to extrusion granulation.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 2, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Cui Zheng, Guixiang Zhu, Lizhi Liu, Wei Zhang
  • Publication number: 20210033973
    Abstract: A method for producing a patterned silicone layer; said method comprising steps of: (a) depositing on a substrate a composition comprising: (i) a polysiloxane comprising alkenyl groups, (ii) a silane crosslinker comprising silicon-hydrogen bonds, (iii) a hydrosilylation catalyst, and (iv) a photolatent amine generator, to form an uncured resin; (b) exposing the uncured resin to ultraviolet light or electron beam irradiation through a mask to produce a patterned resin; (c) heating the patterned resin; and (e) removing at least a part of the uncured portion of the patterned resin to produce a final patterned silicone layer.
    Type: Application
    Filed: February 4, 2019
    Publication date: February 4, 2021
    Inventors: Lizhi Liu, Peng-Fei Fu
  • Publication number: 20190270882
    Abstract: A polyester composition includes a first polyester selected from one or more of aliphatic-aromatic copolyesters, which is a copolymer comprising repeating units A as shown in formula (I) and repeating units B as shown in formula (II), in which m is an integer of 2 to 10 and n is an integer of 2 to 8; p is an integer of 2 to 10; and m, n and p are the same or different from each other. Optionally, the polyester composition has a second polyester. The polyester composition includes at least two polyesters. The polyester composition can be used in shape memory materials, 3D print wires, heat shrinkable sleeves, functional layers, medical limb immobilization braces, heat shrinkable thin films, nonwoven fabrics, elastic fibers, etc.
    Type: Application
    Filed: October 20, 2017
    Publication date: September 5, 2019
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Cui ZHENG, Guixiang ZHU, Lizhi LIU, Wei ZHANG, Xuerong YAO, Minqiao REN, Ling HAN, Yi REN, Nan CHEN, Ying SHI
  • Publication number: 20190264022
    Abstract: A polyester composition includes polybutylene terephthalate and an aliphatic-aromatic copolyester. Based on the total weight of the polybutylene terephthalate and the aliphatic-aromatic copolyester, the content of the polybutylene terephthalate is from 50 to 99% by weight, and the content of the aliphatic-aromatic copolyester is from 1 to 50% by weight. Further, a method for preparing such a polyester composition and a toughened composite material prepared therefrom. The polyester composition has an elongation at break of up to 230% or more, and an improved toughness without substantial loss of strength.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 29, 2019
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Cui ZHENG, Guixiang ZHU, Lizhi LIU, Wei ZHANG
  • Publication number: 20190256649
    Abstract: A polyester composition, includes an aliphatic polyester and an aliphatic-aromatic copolyester. The aliphatic-aromatic copolyester is a copolymer having a repeating unit A and a repeating unit B. The preparation method for the polyester composition includes the steps of mixing all the components having the aliphatic polyester and the aliphatic-aromatic copolyester, and subjecting the resulting mixture to extrusion granulation.
    Type: Application
    Filed: October 20, 2017
    Publication date: August 22, 2019
    Inventors: Cui ZHENG, Guixiang ZHU, Lizhi LIU, Wei ZHANG
  • Patent number: 10113111
    Abstract: The various embodiments of the present invention relate to condensation curable silicone compositions comprising: a condensation curable polyorganosiloxane; and treated particles comprising a particulate solid having an effective amount of nitrogen-containing base (e.g., a nitrogen-containing superbase) disposed thereon. Other embodiments of the present invention relate to methods for preparing the aforementioned treated particles; the treated particles themselves; and methods of using the treated particles and compositions of the various embodiments of the present invention.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 30, 2018
    Assignee: Dow Silicones Corporation
    Inventors: Lizhi Liu, Steven Swier, Yanhu Wei
  • Publication number: 20160230084
    Abstract: The various embodiments of the present invention relate to condensation curable silicone compositions comprising: a condensation curable polyorganosiloxane; and treated particles comprising a particulate solid having an effective amount of nitrogen-containing base (e.g., a nitrogen-containing superbase) disposed thereon. Other embodiments of the present invention relate to methods for preparing the aforementioned treated particles; the treated particles themselves; and methods of using the treated particles and compositions of the various embodiments of the present invention.
    Type: Application
    Filed: August 18, 2015
    Publication date: August 11, 2016
    Inventors: Lizhi Liu, Brian Chislea, Steven Swier, Yanhu Wei
  • Publication number: 20130284978
    Abstract: A polyheterosiloxane composition includes (A) a first metal (M1), (B) a second metal (M2), and (C) siloxy units having the formula (R13SiO1/2), (R12SiO2/2), (R1SiO3/2), and/or (S1O4/2). R1 is independently a hydrocarbon or halogenated hydrocarbon group including 1 to 30 carbon atoms. The mole fractions of (A), (B), and (C) relative to each other is of the formula [(M1)]a[(M2)]b[R13SiO1/2]m[R12SiO2/2]d[R1SiO3/2]t[SiO4/2]q, wherein a and b are each independently from 0.001 to 0.9, each of m, d, t, and q are independently from zero to 0.9 so long as m, d, t, and q are not all zero and the sum of a+b+m+d+t+q?1. At least one of (M1) and (M2) is a lanthanide metal. The composition exhibits a quantum yield of at least 0.05% and is formed using a method including reacting (A?) a metal (M3) alkoxide, (B?) an optional hydrolyzable metal (M4) salt, (C?) a silicon-containing material and (D) water.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 31, 2013
    Applicant: Dow Corning Corporation
    Inventors: David Deshazer, Martin Grasmann, Lizhi Liu, Nanguo Liu, Elizabeth McQuiston, Keith Shawn Mealey, Randall Schmidt
  • Publication number: 20130059967
    Abstract: The invention provides a composition comprising a first composition that comprises an ethylene-based polymer and an oil, and wherein the first composition has the following property as determined by small angle x-ray scattering: (Loil?Lno-oil)/Lno-oil>10%, where Loil is the long period of the polymer with oil, and Lno-oil is the long period of the polymer without oil.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 7, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Wenbin Liang, Lizhi Liu, Shouren Ge
  • Publication number: 20130041092
    Abstract: The invention provides a composition comprising at least the following: A) an ethylene-based polymer having at least the following characteristics: (i) a melting temperature of greater than, or equal to, 100° C., as determined by DSC, and (ii) a molecular weight ratio, Mz(abs)/Mz(conv) greater than 2.2; and B) an oil.
    Type: Application
    Filed: May 25, 2011
    Publication date: February 14, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Wenbin Liang, Lizhi Liu
  • Publication number: 20100048378
    Abstract: A transparent yttrium aluminum garnet precursor composition is provided that includes a plurality of calcined particles of yttrium aluminum oxide having a mean particle domain size of between 10 and 200 nanometers and a predominant hexagonal crystal structure. High levels of YAG transparency are obtained for large YAG articles through control of the aluminum:yttrium atomic ratio to 1:06±0.001 and limiting impurity loadings to less than 100 ppm. The composition is calcined at a temperature between 700° Celsius and 900° Celsius to remove organic additives to yield a predominant metastable hexagonal phase yttrium aluminum oxide nanoparticulate having an atomic ratio of aluminum: yttrium of 1:0.6±0.001. With dispersion in an organic binder and a translucent YAG article is formed having a transmittance at a wavelength of 1064 nanometers of greater than 75%.
    Type: Application
    Filed: April 24, 2008
    Publication date: February 25, 2010
    Applicant: NANOCEROX, INC.
    Inventors: Yin Tang, Anthony C. Sutorik, Long Nguyen, Lizhi Liu, Chris Zyskowski
  • Publication number: 20070036972
    Abstract: Fibers that exhibit good elasticity or extensibility and tenacity, and low modulus are prepared from propylene-based copolymers. The propylene-based copolymers comprise at least about 50 weight percent (wt %) of units derived from propylene and at least about 8 wt % of units derived from one or more comonomers other than propylene, e.g., ethylene. Particularly preferred propylene copolymers are characterized as having 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. In one aspect of the invention, fibers are subjected to stress-induced crystallization by subjecting the fiber to tensile elongation during draw.
    Type: Application
    Filed: August 3, 2006
    Publication date: February 15, 2007
    Inventors: Andy Chang, Jozef Van Dun, Hong Peng, Randy Pepper, Edward Knickerbocker, Rajen Patel, Byron Day, Joy Jordan, Antonios Doufas, Lizhi Liu, Stephen Englebert, Renette Richard, Christian Sanders, Varunesh Sharma
  • Patent number: 7101622
    Abstract: Fibers that exhibit good elasticity or extensibility and tenacity, and low modulus are prepared from propylene-based copolymers. The propylene-based copolymers comprise at least about 50 weight percent (wt %) of units derived from propylene and at least about 8 wt % of units derived from one or more comonomers other than propylene, e.g., ethylene. Particularly preferred propylene copolymers are characterized as having 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. In one aspect of the invention, fibers are subjected to stress-induced crystallization by subjecting the fiber to tensile elongation during draw.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: September 5, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: Andy C. Chang, Hong Peng, Jozef J. I. Van Dun, Randy E. Pepper, Edward N. Knickerbocker, Antonios K. Doufas, Rajen M. Patel, Lizhi Liu, Byron P. Day, Stephen M. Englebert, Joy F. Jordan, Renette E. Richard, Christian L. Sanders, Varunesh Sharma