Patents by Inventor Lizhong Zheng

Lizhong Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11171693
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 9, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20200067575
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Jay Rodney WALTON, Lizhong ZHENG, John W. KETCHUM, Mark S. WALLACE, Steven J. HOWARD
  • Patent number: 10476560
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: November 12, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20190281609
    Abstract: A user equipment (UE) is described. The UE includes a processor and memory in electronic communication with the processor. Instructions stored in the memory are executable to transmit or receive an ultra-reliable low latency communication (URLLC) transmission that overrides a downlink (DL) schedule or interferes on an uplink (UL) transmission with an enhanced mobile broadband (eMBB) transmission or a massive machine type communication (MMTC) transmission.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 12, 2019
    Inventors: John Michael Kowalski, Toshizo Nogami, Zhanping Yin, Jia Sheng, Lizhong Zheng, Kai Ying, Kenneth James Park
  • Publication number: 20180048362
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 15, 2018
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20180027576
    Abstract: A user equipment (UE) is described. The UE includes a processor and memory in electronic communication with the processor. Instructions stored in the memory are executable to transmit or receive an ultra-reliable low latency communication (URLLC) transmission that overrides a downlink (DL) schedule or interferes on an uplink (UL) transmission with an enhanced mobile broadband (eMBB) transmission or a massive machine type communication (MMTC) transmission.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 25, 2018
    Inventors: John Michael Kowalski, Toshizo Nogami, Zhanping Yin, Jia Sheng, Lizhong Zheng, Kai Ying, Kenneth James Park
  • Patent number: 9787375
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 10, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20160329936
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 24, 2014
    Publication date: November 10, 2016
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8903016
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: December 2, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8806288
    Abstract: A method of encoding that uses standard codecs such as linear encoders and decoders for encoding and decoding data with different levels of robustness to errors is described. In one configuration, multiple encoders may be utilized, and one of the encoders may use a standard encoder such as a turbo code followed by a nonlinearity that creates an unequal distribution of ones and zeros in a binary representation of the code. In another configuration, a coder may be utilized that represents message outputs as “channels” that create state transitions (or symbol errors) in a data forward error correction coder.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: August 12, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: John Michael Kowalski, Sayantan Choudhury, Kimihiko Imamura, Lizhong Zheng, Ahmad Khoshnevis, Zhanping Yin
  • Patent number: 8792469
    Abstract: A method for coding control data with user data repetition is disclosed. Bits in user data may be removed. Bits in control data may be repeated to increase a number of bits in the control data. A number of bits in the user data that is the same as the number of bits in the control data may be copied. The copied user data bits may be added to the control data. The user data and the control data may be multiplexed.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: July 29, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Zhanping Yin, John M. Kowalski, Lizhong Zheng
  • Patent number: 8619901
    Abstract: Input data may be coded in accordance with a coding method that allows for either coded data or messages to be transmitted with pre-determined, but unequal reliability over a communication channel. The coding method may allow the messages to be transmitted with higher reliability than the coded data. Messages may be transmitted when they are available. Otherwise, the coded data may be transmitted.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: December 31, 2013
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: John M. Kowalski, Lizhong Zheng
  • Patent number: 8553627
    Abstract: A method for transmitting uplink control information (UCI) using a physical uplink control channel (PUCCH) transmit diversity scheme is described. A UCI is coded with a Forward Error Correction code to obtain a coded UCI. The coded UCI is mapped to quadrature phase shift keying (QPSK) symbols to obtain a mapped coded UCI. A phase shift pattern is selected. A phase shift from the phase shift pattern is applied to the mapped coded UCI based on an acknowledge/negative-acknowledge (ACK/NACK) to obtain a phase shifted mapped coded UCI. The mapped coded UCI is sent using a PUCCH resource on a first antenna. The phase shifted mapped coded UCI is sent using a PUCCH resource on a second antenna.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 8, 2013
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Zhanping Yin, John M. Kowalski, Lizhong Zheng
  • Patent number: 8543867
    Abstract: A communication device configured for transmission of Acknowledgement and Negative Acknowledgement (ACK/NACK) is described. The communication device includes a processor and instructions stored in memory. The communication device determines one or more thresholds based on a size of one or more code words and generates a compressed ACK/NACK sequence. The compressed ACK/NACK sequence identifies one or more correctly received code words and one or more incorrectly received code words if the number of incorrectly received code words is less than the threshold. If the number of incorrectly received code words is greater than the threshold, the compressed ACK/NACK sequence indicates that all of the one or more code words were incorrectly received.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: September 24, 2013
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Ahmad Khoshnevis, Lizhong Zheng, John M. Kowalski
  • Patent number: 8479075
    Abstract: A system and method for preserving neighborhoods in codes are provided. A method for transmitting information includes receiving an information string to transmit, generating a first address and a second address from the information string, encoding the first address and the second address with a layered code encoder, thereby producing a codeword and transmitting the codeword. The generating is based on a linear block code.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 2, 2013
    Assignee: FutureWei Technologies, Inc.
    Inventors: Lizhong Zheng, Yufei Blankenship
  • Patent number: 8325850
    Abstract: A system and method for digital communications with unbalanced codebooks is provided. A transmitter includes a channel encoder that generates an output codeword from an information vector provided by an information input, and a modulator/transmitter circuit coupled to the channel encoder. The modulator/transmitter circuit prepares the output codeword for transmission over a physical channel. The channel encoder encodes the information vector into an intermediate codeword using a first code and shapes the intermediate codeword into the output codeword having a desired distribution.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: December 4, 2012
    Assignee: FutureWei Technologies, Inc.
    Inventors: Lizhong Zheng, Yufei Blankenship
  • Publication number: 20120250788
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 4, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8204149
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 19, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20120056764
    Abstract: A system and method for preserving neighborhoods in codes are provided. A method for transmitting information includes receiving an information string to transmit, generating a first address and a second address from the information string, encoding the first address and the second address with a layered code encoder, thereby producing a codeword and transmitting the codeword. The generating is based on a linear block code.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Applicant: FutureWei Technologies, Inc.
    Inventors: Lizhong Zheng, Yufei Blankenship
  • Publication number: 20110246840
    Abstract: A communication device configured for transmission of Acknowledgement and Negative Acknowledgement (ACK/NACK) is described. The communication device includes a processor and instructions stored in memory. The communication device determines one or more thresholds based on a size of one or more code words and generates a compressed ACK/NACK sequence. The compressed ACK/NACK sequence identifies one or more correctly received code words and one or more incorrectly received code words if the number of incorrectly received code words is less than the threshold. If the number of incorrectly received code words is greater than the threshold, the compressed ACK/NACK sequence indicates that all of the one or more code words were incorrectly received.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Ahmad Khoshnevis, Lizhong Zheng, John M. Kowalski