Patents by Inventor Lloyd Frederick Holland

Lloyd Frederick Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10139633
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 27, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Patent number: 10133075
    Abstract: Systems, devices, and methods for combined angle- and wavelength multiplexing in holographic optical elements (“HOE”) are described. An angle- and wavelength-multiplexed HOE includes multiple angle-multiplexed sets of wavelength-multiplexed holograms. Each set of wavelength-multiplexed holograms includes at least two holograms that are each responsive to a different wavelength of light. Each angle-multiplexed set of wavelength-multiplexed holograms includes a respective set of wavelength-multiplexed holograms that are all responsive to light that is incident thereon with and angle of incidence that is within a particular range. An example application is described in which an angle- and wavelength-multiplexed HOE is used as a holographic combiner in a wearable heads-up display, where angle-multiplexing provides multiple spatially-separated exit pupils in the eyebox of the display and wavelength-multiplexing provides multiple colors to each respective exit pupil.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: November 20, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Matthew Bailey, Stefan Alexander, Vance R. Morrison, Thomas Mahon, Lloyd Frederick Holland, Jaehong Choi
  • Patent number: 10114222
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: October 30, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Publication number: 20180299680
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in scanning laser-based wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a scanning laser projector (“SLP”), a holographic combiner, and an optical replicator positioned in the optical path therebetween. For each light signal generated by the SLP, the optical replicator receives the light signal and redirects each one of N>1 instances of the light signal towards the holographic combiner effectively from a respective one of N spatially-separated virtual positions for the SLP. The holographic combiner converges each one of the N instances of the light signal to a respective one of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland
  • Publication number: 20180299679
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in scanning laser-based wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a scanning laser projector (“SLP”), a holographic combiner, and an optical replicator positioned in the optical path therebetween. For each light signal generated by the SLP, the optical replicator receives the light signal and redirects each one of N>1 instances of the light signal towards the holographic combiner effectively from a respective one of N spatially-separated virtual positions for the SLP. The holographic combiner converges each one of the N instances of the light signal to a respective one of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland
  • Patent number: 10078219
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 18, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Patent number: 10078220
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. At least one narrow waveband laser diode is used in an SLP to define one or more portion(s) of a visible image. At least one corresponding narrow waveband photodetector is aligned to detect reflections of the portion(s) of the image from features of the eye. A holographic optical element (“HOE”) may be used to combine the image and environmental light into the user's “field of view.” Three narrow waveband photodetectors each responsive to a respective one of three narrow wavebands output by the RGB laser diodes of an RGB SLP are aligned to detect reflections of a projected RGB image from features of the eye.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 18, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Patent number: 10073268
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. At least one narrow waveband laser diode is used in an SLP to define one or more portion(s) of a visible image. At least one corresponding narrow waveband photodetector is aligned to detect reflections of the portion(s) of the image from features of the eye. A holographic optical element (“HOE”) may be used to combine the image and environmental light into the user's “field of view.” Three narrow waveband photodetectors each responsive to a respective one of three narrow wavebands output by the RGB laser diodes of an RGB SLP are aligned to detect reflections of a projected RGB image from features of the eye.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: September 11, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Publication number: 20180252926
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Application
    Filed: May 4, 2018
    Publication date: September 6, 2018
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20180210213
    Abstract: Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 26, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20180210216
    Abstract: Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 26, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20180210215
    Abstract: Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.
    Type: Application
    Filed: December 22, 2017
    Publication date: July 26, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Patent number: 10031338
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in scanning laser-based wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a scanning laser projector (“SLP”), a holographic combiner, and an optical replicator positioned in the optical path therebetween. For each light signal generated by the SLP, the optical replicator receives the light signal and redirects each one of N>1 instances of the light signal towards the holographic combiner effectively from a respective one of N spatially-separated virtual positions for the SLP. The holographic combiner converges each one of the N instances of the light signal to a respective one of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 24, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland
  • Publication number: 20180180886
    Abstract: Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having two orthogonally positioned planar input surfaces, an output surface, and at least two planar dichroic reflectors positioned within the solid volume. Multiple light sources input light into the solid volume through the two planar input surfaces such that each light beam from a respective source is initially incident on one of the planar dichroic reflectors. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 28, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20180180885
    Abstract: Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having a planar input surface, an output surface, a planar reflector physically coupled to the solid volume, and at least a first planar dichroic reflector within the solid volume. Multiple light sources input light into the solid volume through the planar input surface such that each light beam from a respective source is initially incident on one of the planar reflector and the at least a first planar dichroic reflector. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 28, 2018
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Patent number: 9989764
    Abstract: Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: June 5, 2018
    Assignee: THALMIC LABS INC.
    Inventors: Stefan Alexander, Matthew Bailey, Vance R. Morrison, Lloyd Frederick Holland, Joshua Moore
  • Publication number: 20180136469
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 17, 2018
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Publication number: 20180129054
    Abstract: Systems, devices, and methods for beam shaping in wearable heads-up displays (WHUD) with laser projectors are described. A WHUD includes a support structure carrying a laser projector and an eyeglass lens with a transparent combiner. The laser projector includes at least one laser diode, at least one anamorphic optical element, and a controllable mirror having a reflective area. The at least one laser diode generates laser light having a spot area with at least one dimension being smaller or larger than the dimensions of the reflective area of the controllable mirror. The at least one anamorphic optical element anamorphically reshapes the spot area such that the second spot area has approximately the same dimensions as the controllable mirror. The controllable mirror scans the reshaped laser light over the transparent combiner, which redirects the light, creating a focused image at the eye of the user with minimal loss of laser light.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 10, 2018
    Inventors: Vance R. Morrison, Lloyd Frederick Holland, Ian Andrews, Andrew S. Logan
  • Publication number: 20180129058
    Abstract: Systems, devices, and methods for field shaping in wearable heads-up displays (WHUD) with laser projectors are described. A WHUD includes a support structure carrying a laser projector, a field shaper optic, and a transparent combiner to combine the projected laser light and environmental light. The laser projector generates a laser light having a field. The laser light is scanned through the field shaper optic and over the transparent combiner. The field shaper optic heterogeneously varies the focal length of the laser light depending on the laser light properties to alter the field of the laser light to approximately match a shape of the transparent combiner. The transparent combiner redirects the laser light to a field of view of a user to create a focused image at an eye of the user.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 10, 2018
    Inventors: Vance R. Morrison, Lloyd Frederick Holland, Ian Andrews, Andrew S. Logan
  • Publication number: 20180129057
    Abstract: Systems, devices, and methods for beam shaping in wearable heads-up displays (WHUD) with laser projectors are described. A WHUD includes a support structure carrying a laser projector and an eyeglass lens with a transparent combiner. The laser projector includes at least one laser diode, at least one anamorphic optical element, and a controllable mirror having a reflective area. The at least one laser diode generates laser light having a spot area with at least one dimension being smaller or larger than the dimensions of the reflective area of the controllable mirror. The at least one anamorphic optical element anamorphically reshapes the spot area such that the second spot area has approximately the same dimensions as the controllable mirror. The controllable mirror scans the reshaped laser light over the transparent combiner, which redirects the light, creating a focused image at the eye of the user with minimal loss of laser light.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 10, 2018
    Inventors: Vance R. Morrison, Lloyd Frederick Holland, Ian Andrews, Andrew S. Logan