Patents by Inventor Lloyd W. Burgess

Lloyd W. Burgess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6977729
    Abstract: This invention provides a spherical lens optical immersion probe for use in analysis of solids, liquids, gases, powders, suspensions, slurries, particles and other homogeneous or heterogeneous samples. The use of a spherical lens in an optical immersion probe confers many advantages over traditional immersion probes including ease of use and accuracy of focus. The probe of this invention has applications to many types of optical spectroscopy methods including ultraviolet/visible (UV-Vis), near-infrared (NIR), mid-infrared (FTIR), fluorescence, and Raman spectroscopy. The spherical lens used in this invention is both the optical and sample interface in the analytical system, and may be used to both focus the excitation source and to collecting signal. Importantly, this invention has broad applications to any optical analytical technology that necessitates an optical immersion probe.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: December 20, 2005
    Assignee: University of Washington
    Inventors: Brian J. Marquardt, Lloyd W. Burgess
  • Patent number: 6831745
    Abstract: This invention provides a spherical lens optical immersion probe for use in analysis of solids, liquids, gases, powders, suspensions, slurries, particles and other homogeneous or heterogeneous samples. The use of a spherical lens in an optical immersion probe confers many advantages over traditional immersion probes including ease of use and accuracy of focus. The probe of this invention has applications to many types of optical spectroscopy methods including ultraviolet/visible (UV-Vis), near infrared (NIR), mid-infrared (FTIR), fluorescence, and Raman spectroscopy. The spherical lens used in this invention is both the optical and sample interface in the analytical system, and may be used to both focus the excitation source and to collecting signal. Importantly, this invention has broad applications to any optical analytical technology that necessitates an optical immersion probe.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: December 14, 2004
    Assignee: University of Washington
    Inventors: Brian J. Marquardt, Lloyd W. Burgess
  • Publication number: 20040165183
    Abstract: This invention provides a spherical lens optical immersion probe for use in analysis of solids, liquids, gases, powders, suspensions, slurries, particles and other homogeneous or heterogeneous samples. The use of a spherical lens in an optical immersion probe confers many advantages over traditional immersion probes including ease of use and accuracy of focus. The probe of this invention has applications to many types of optical spectroscopy methods including ultraviolet/visible (UV-Vis), near-infrared (NIR), mid-infrared (FTIR), fluorescence, and Raman spectroscopy. The spherical lens used in this invention is both the optical and sample interface in the analytical system, and may be used to both focus the excitation source and to collecting signal. Importantly, this invention has broad applications to any optical analytical technology that necessitates an optical immersion probe.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Inventors: Brian J. Marquardt, Lloyd W. Burgess
  • Publication number: 20020126289
    Abstract: This invention provides a spherical lens optical immersion probe for use in analysis of solids, liquids, gases, powders, suspensions, slurries, particles and other homogeneous or heterogeneous samples. The use of a spherical lens in an optical immersion probe confers many advantages over traditional immersion probes including ease of use and accuracy of focus. The probe of this invention has applications to many types of optical spectroscopy methods including ultraviolet/visible (UV-Vis), near-infrared (NIR), mid-infrared (FTIR), fluorescence, and Raman spectroscopy. The spherical lens used in this invention is both the optical and sample interface in the analytical system, and may be used to both focus the excitation source and to collecting signal. Importantly, this invention has broad applications to any optical analytical technology that necessitates an optical immersion probe.
    Type: Application
    Filed: January 23, 2002
    Publication date: September 12, 2002
    Inventors: Brian J. Marquardt, Lloyd W. Burgess
  • Patent number: 5434084
    Abstract: There is disclosed a device capable of continuously measuring the presence and concentration of an analyte or analytes and a method for using said device in a liquid and/or a gas phase reaction volume. The inventive device comprises a sensor probe, a reservoir, and a detector. The inventive device delivers reagent to the sensor probe in a flow method to directly and continuously renew reagent, thereby allowing the continuous measurement of the presence and the concentration of an analyte or analytes.
    Type: Grant
    Filed: September 6, 1989
    Date of Patent: July 18, 1995
    Assignees: The Washington Research Foundation, The Board of Regents of the University of Washington
    Inventor: Lloyd W. Burgess, Jr.
  • Patent number: 5168156
    Abstract: A fiber-optic sensor is formed from three optical fibers. The distal ends of the fibers are optically linked by bonding their cores and directing their ends to mirrors. A portion of one of the fibers near the bonded point is exposed directly to the fluid to be sensed. The transmission characteristics of this fiber, the signal fiber, is then affected by the chemical constituents of the fluid. Light directed into the proximal end of one of the other fibers, the input fiber, is split between the signal fiber and the remaining fiber, the reference fiber. The ratio of the light in the signal fiber to the light in the reference fiber provides an indication of the chemical constituents that minimizes errors introduced by factors such as bends in the fibers and temperature.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: December 1, 1992
    Assignee: The Standard Oil Company
    Inventors: George Fischer, Lloyd W. Burgess, Jr.
  • Patent number: 5082629
    Abstract: There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: January 21, 1992
    Assignees: The Board of the University of Washington, Battelle Development Corporation
    Inventors: Lloyd W. Burgess, Jr., Don S. Goldman