Patents by Inventor Longyuan Li

Longyuan Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11002661
    Abstract: An apparatus for identifying metal corrosion includes a metal test piece, a push button timer, a liquid tank, a support, two fixed pulleys, a traction cable, a weight and a vibration motor. The support and the first pulley are in a lower portion of the tank. The second pulley is above the first pulley. The test piece is fixed on the support and connected to a first end of the traction cable which sequentially winds around the pulleys with a second end outside the tank. The weight, on which the motor is fixed, is suspended at the second end. The timer is under the motor. A corrosion solution is added into the tank, and the vibration motor provides alternating stress. When the metal test piece is broken, the weight and the motor are dropped and pressed on the electronic timer to record breaking time of the metal test piece.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: May 11, 2021
    Assignee: SHENZHEN UNIVERSITY
    Inventors: Dawang Li, Feng Xing, Jiazhao Liu, Longyuan Li
  • Publication number: 20190226978
    Abstract: An apparatus for identifying metal corrosion includes a metal test piece, a push button timer, a liquid tank, a support, two fixed pulleys, a traction cable, a weight and a vibration motor. The support and the first pulley are in a lower portion of the tank. The second pulley is above the first pulley. The test piece is fixed on the support and connected to a first end of the traction cable which sequentially winds around the pulleys with a second end outside the tank. The weight, on which the motor is fixed, is suspended at the second end. The timer is under the motor. A corrosion solution is added into the tank, and the vibration motor provides alternating stress. When the metal test piece is broken, the weight and the motor are dropped and pressed on the electronic timer to record breaking time of the metal test piece.
    Type: Application
    Filed: February 2, 2018
    Publication date: July 25, 2019
    Inventors: Dawang LI, Feng XING, Jiazhao LIU, Longyuan LI
  • Patent number: 9893152
    Abstract: A semi-insulating silicon carbide monocrystal and a method of growing the same are disclosed. The semi-insulating silicon carbide monocrystal comprises intrinsic impurities, deep energy level dopants and intrinsic point defects. The intrinsic impurities are introduced unintentionally during manufacture of the silicon carbide monocrystal, and the deep energy level dopants and the intrinsic point defects are doped or introduced intentionally to compensate for the intrinsic impurities. The intrinsic impurities include shallow energy level donor impurities and shallow energy level acceptor impurities. A sum of a concentration of the deep energy level dopants and a concentration of the intrinsic point defects is greater than a difference between a concentration of the shallow energy level donor impurities and a concentration of the shallow energy level acceptor impurities, and the concentration of the intrinsic point defects is less than the concentration of the deep energy level dopants.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: February 13, 2018
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Chunjun Liu, Tonghua Peng, Longyuan Li, Bo Wang, Gang Wang, Wenjun Wang, Yu Liu
  • Patent number: 9340898
    Abstract: A technology for growing silicon carbide single crystals by PVT (Physical Vapor Transport) and a technology for in-situ annealing the crystals after growth is finished is provided. The technology can achieve real-time dynamic control of the temperature distribution of growth chamber by regulating the position of the insulation layer on the upper part of the graphite crucible, thus controlling the temperature distribution of growth chamber in real-time during the growth process according to the needs of the technology, which helps to significantly improve the crystal quality and production yield.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 17, 2016
    Assignees: Tankeblue Semiconductor Co. Ltd., Institute of Physics Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Bo Wang, Longyuan Li, Tonghua Peng, Chunjun Liu, Wenjun Wang, Gang Wang
  • Publication number: 20130313575
    Abstract: A semi-insulating silicon carbide monocrystal and a method of growing the same are disclosed. The semi-insulating silicon carbide monocrystal comprises intrinsic impurities, deep energy level dopants and intrinsic point defects. The intrinsic impurities are introduced unintentionally during manufacture of the silicon carbide monocrystal, and the deep energy level dopants and the intrinsic point defects are doped or introduced intentionally to compensate for the intrinsic impurities. The intrinsic impurities include shallow energy level donor impurities and shallow energy level acceptor impurities. A sum of a concentration of the deep energy level dopants and a concentration of the intrinsic point defects is greater than a difference between a concentration of the shallow energy level donor impurities and a concentration of the shallow energy level acceptor impurities, and the concentration of the intrinsic point defects is less than the concentration of the deep energy level dopants.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 28, 2013
    Applicant: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaolong Chen, Chunjun Liu, Tonghua Peng, Longyuan Li, Bo Wang, Gang Wang, Wenjun Wang, Yu Liu
  • Publication number: 20130269598
    Abstract: A technology for growing silicon carbide single crystals by PVT (Physical Vapor Transport) and a technology for in-situ annealing the crystals after growth is finished is provided. The technology can achieve real-time dynamic control of the temperature distribution of growth chamber by regulating the position of the insulation layer on the upper part of the graphite crucible, thus controlling the temperature distribution of growth chamber in real-time during the growth process according to the needs of the technology, which helps to significantly improve the crystal quality and production yield.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 17, 2013
    Applicants: Institute of Physics Chinese Academy of Sciences, Tankeblue Semiconductor Co. Ltd.
    Inventors: Xiaolong Chen, Bo Wang, Longyuan Li, Tonghua Peng, Chunjun Liu, Wenjun Wang, Gang Wang