Patents by Inventor Lonnie G. Johnson

Lonnie G. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11870050
    Abstract: An electrochemical direct heat to electricity converter includes a primary thermal energy source; a working fluid; an electrochemical cell comprising at least one membrane electrode assembly including a first porous electrode, a second porous electrode and at least one membrane, wherein the at least one membrane is sandwiched between the first and second porous electrodes and is a conductor of ions of the working fluid; an energy storage reservoir; and an external load. The electrochemical cell operates on heat to produce electricity. When thermal energy available from the primary thermal energy source is greater than necessary to meet demands of the external load, excess energy is stored in the energy storage reservoir, and when the thermal energy available from the primary thermal energy source is insufficient to meet the demands of the external load, at least a portion of the excess energy stored in the energy storage reservoir is used to supply power to the external load.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: January 9, 2024
    Assignee: JTEC ENERGY, INC.
    Inventor: Lonnie G. Johnson
  • Patent number: 11799116
    Abstract: A electrochemical direct heat to electricity converter having a low temperature membrane electrode assembly array and a high temperature membrane electrode assembly array is provided. Additional cells are provided in the low temperature membrane electrode assembly array, which causes an additional amount of the working fluid, namely hydrogen, to be pumped to the high pressure side of the converter. The additional pumped hydrogen compensates for the molecular hydrogen diffusion that occurs through the membranes of the membrane electrode assembly arrays. The MEA cells may be actuated independently by a controller to compensate for hydrogen diffusion.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: October 24, 2023
    Assignee: JTEC ENERGY, INC.
    Inventor: Lonnie G. Johnson
  • Patent number: 11749826
    Abstract: A heat to electricity converter including a working fluid and a pair of membrane electrode assemblies (MEA) is provided. Each MEA includes a pair of electrodes which are electron conductive and permeable to the working fluid, and a thin film electrolyte membrane sandwiched between the electrodes. The membrane is conductive of ions of the working fluid and has a thickness of 0.03 ?m to 10 ?m. At least one electrode of each MEA includes a non-porous and dense metal. One electrode of each MEA is in contact with the working fluid at a first, higher pressure, while the other electrode is in contact with the working fluid at a second, lower pressure. The first MEA is configured to compress the working fluid from the second pressure to the first pressure, while the second MEA is configured to expand the working fluid from the first pressure to the second pressure.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 5, 2023
    Assignee: JTEC ENERGY, INC.
    Inventors: Lonnie G. Johnson, David Ketema Johnson
  • Publication number: 20230194127
    Abstract: A geothermal heat extractor includes a heat transfer fluid and a heat transfer fluid supply conduit. The heat transfer fluid is maintained in the supply conduit in a liquid state at a pressure above its saturation pressure. The geothermal heat extractor further includes a heat transfer fluid return conduit, a geothermal heat source coupled thereto, at least one flow control valve configured to control the flow of the heat transfer fluid from the supply conduit to the return conduit, and an external load coupled to the return conduit. As the heat transfer fluid is provided to the return conduit in the liquid state, the heat transfer fluid vaporizes in the return conduit by heat supplied to the return conduit from the geothermal heat source. The vaporized heat transfer fluid is supplied from the return conduit to the external load.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 22, 2023
    Inventor: Lonnie G. JOHNSON
  • Publication number: 20230189648
    Abstract: An ambient energy converter includes a housing having an upper portion and a lower portion. The housing lower portion has a hydrophobic material portion. The upper portion has a vent opening in fluid communication with ambience. The housing contains a mass of hygroscopic within the housing lower portion that is in fluid communication with the hydrophobic material portion. An ion conductive membrane electrode assembly is coupled to the housing to allow the passage of ionized water or water vapor through the ion conductive membrane electrode and into contact with the hygroscopic solution. An air conduit may be coupled to the housing to provide an airflow to the ion conductive membrane electrode and/or hydrophobic material portion.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 15, 2023
    Inventor: Lonnie G. Johnson
  • Patent number: 11631877
    Abstract: A method for bonding together two or more acid-doped polybenzimidazole films is provided.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 18, 2023
    Assignee: JTEC ENERGY, INC.
    Inventors: Lonnie G. Johnson, Andrew Ashford Knight, Tedric D. Campbell, Malcolm Moses Johnson
  • Publication number: 20230056025
    Abstract: A thermo-electrochemical converter is provided. The converter includes a working fluid, coupled first and second membrane electrode assemblies (MEA), first and second heat transfer members, a heat sink and a heat source. Each MEA includes a first porous electrode operating at a first pressure, a second porous electrode operating at a second pressure which is higher than the first pressure, and an ion conductive membrane sandwiched therebetween. The first MEA compresses the working fluid and the second MEA expands the working fluid. The first heat transfer member is coupled to and thermally interfaces with a low-pressure electrode of the first MEA. The second heat transfer member is coupled to and thermally interfaces with a lowpressure electrode of the second MEA. The heat sink is coupled to the low-pressure side of the first MEA and the heat source is coupled to the low-pressure side of the second MEA.
    Type: Application
    Filed: February 12, 2021
    Publication date: February 23, 2023
    Applicant: JTEC Energy, Inc.
    Inventors: Lonnie G. JOHNSON, David Ketema JOHNSON, Andrew Ashford KNIGHT, Tedric D. CAMPBELL
  • Patent number: 11581599
    Abstract: An ambient water condenser system is described having a condensation chamber which at least partially contains or surrounds a fluid reservoir which contains a volume or mass of an aqueous hygroscopic solution for condensing water from ambient air and a distillation process for extracting the water from the solution. The fluid reservoir has a heat source, a lower porous hydrophobic membrane, and an upper porous hydrophobic membrane. The heat source causes the hygroscopic solution near the top of reservoir to have a higher temperature which causes it to have a higher water vapor pressure, whereby the water vapor passing through the upper porous hydrophobic membrane and into the condensation chamber condenses into liquid water.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 14, 2023
    Assignee: Johnson IP Holding, LLC
    Inventor: Lonnie G. Johnson
  • Publication number: 20230011620
    Abstract: An ambient heat energy converter includes a first positive evaporating electrode which functions as the cathode, a membrane separator, a porous barrier membrane, and a second, negative condensing electrode which functions as the anode. Electrodes and are porous and facilitate hydrogen-oxygen reactions that electrolyze and reduce water respectively. Porous barrier membrane allows water and protons to pass through but prevents hygroscopic acid or base ions in condensing electrode from passing through, only water and protons can pass. During operation, membrane separator's high affinity for liquid water maintains a tension that pulls liquid water through porous barrier membrane from condensing electrode. Barrier membrane does not allow ions other than water that comprise the hygroscopic material in condensing electrode to pass through. Conversely, the hygroscopic nature of condensing electrode maintains water tension in the opposite direction. A housing surrounds the electrodes and creates a free flowing path.
    Type: Application
    Filed: August 23, 2022
    Publication date: January 12, 2023
    Inventor: Lonnie G. Johnson
  • Patent number: 11489185
    Abstract: An generator that uses on the heat of condensation of water vapor as an energy source to produce electrical power. A hygroscopic, membrane electrode assembly is configured having an ion conductive hygroscopic electrolyte sandwiched between a pair of electrodes. One electrode is in contact with the water and the other electrode being in contact with a water vapor source whereby an electrochemical potential differential is produced across an electrical load by the reaction potential of the hygroscopic electrolyte with water vapor relative to the electrolyte's reaction potential with the liquid water. Power is supplied to an external load connected between the electrodes with water vapor being electrolyzed at the electrode that is in contact with water vapor and liquid water being reduced at the electrode that is in contact with liquid water.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: November 1, 2022
    Inventor: Lonnie G Johnson
  • Patent number: 11417873
    Abstract: Solid-state batteries, battery components, and related processes for their production are provided. The battery electrodes or separators contain sintered electrochemically active material, inorganic solid particulate electrolyte having large particle size, and low melting point solid inorganic electrolyte which acts as a binder and/or a sintering aid in the electrode.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 16, 2022
    Assignee: JOHNSON IP HOLDING, LLC
    Inventors: Lazbourne Alanzo Allie, Adrian M. Grant, Devon Lyman, Lonnie G. Johnson, David Ketema Johnson
  • Publication number: 20220216539
    Abstract: A lithium air battery system includes a thermally insulating housing, at least one lithium air cell positioned inside the thermally insulating housing, a supply of air, a recuperative heat exchanger, and first and second conduits. The thermally insulating housing has at least one wall including at least one heat reflective layer and at least one vacuum layer. The first and second conduits couple the heat exchanger with the thermally insulating housing. During operation, the first conduit conducts air flow in a first direction through the recuperative heat exchanger and into the thermally insulating housing and the second conduit conducts air flow out of the thermally insulating housing and through the recuperative heat exchanger in a second direction which is opposite to the first direction. The recuperative heat exchanger transfers heat from the air flowing out of the thermally insulating housing to the air flowing into the thermally insulating housing.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 7, 2022
    Inventor: Lonnie G. JOHNSON
  • Publication number: 20220166063
    Abstract: A solid state Li battery and an all ceramic Li-ion battery are disclosed. The all ceramic battery has a solid state battery cathode comprised of a mixture of an active cathode material, an electronically conductive material, and a solid ionically conductive material. The cathode mixture is sintered. The battery also has a solid state battery anode comprised of a mixture of an active anode material, an electronically conductive material, and a solid ionically conductive material. The anode mixture is sintered. The battery also has a solid state separator positioned between said solid state battery cathode and said solid state battery anode. In the solid state Li battery the all ceramic anode is replaced with an evaporated thin film Li metal anode.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 26, 2022
    Inventors: Lonnie G. JOHNSON, Steve BUCKINGHAM, Davorin BABIC, David Ketema JOHNSON
  • Publication number: 20220149414
    Abstract: A electrochemical direct heat to electricity converter having a low temperature membrane electrode assembly array and a high temperature membrane electrode assembly array is provided. Additional cells are provided in the low temperature membrane electrode assembly array, which causes an additional amount of the working fluid, namely hydrogen, to be pumped to the high pressure side of the converter. The additional pumped hydrogen compensates for the molecular hydrogen diffusion that occurs through the membranes of the membrane electrode assembly arrays.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventor: Lonnie G. JOHNSON
  • Patent number: 11326497
    Abstract: An energy recovery converter for exhaust gases or waste heat is provided. The converter includes a membrane electrode assembly (MEA), an exhaust gas having a first molecular oxygen content, and an external electrical load. The MEA includes a first electrode, a second electrode and an oxygen ion conductive membrane sandwiched between the first and second electrodes. Each of the first and second electrodes includes at least one oxidation catalyst configured to promote an electrochemical reaction. The second electrode of the MEA is exposed to the exhaust gas and the first electrode of the MEA is exposed to a gas having a second molecular oxygen content. The second molecular oxygen content is higher than the first molecular oxygen content. The external electrical load is connected between the first and second electrodes of the MEA.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: May 10, 2022
    Assignee: Johnson IP Holding, LLC
    Inventor: Lonnie G. Johnson
  • Publication number: 20220115636
    Abstract: A solid-state battery cell is provided, which contains a sintered metal oxide cathode, in which a surface of the cathode has an array of cavities extending about 60-90% into a depth of the cathode; a glass or glass ceramic electrolyte separator forming a smooth layer on the cathode surface and extending into the depths of the cavities of the cathode; and a lithium-based anode in contact with the electrolyte on a side opposite the cathode. A method of making the solid-state battery cell is also described.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 14, 2022
    Inventors: Lonnie G. JOHNSON, Lazbourne Alanzo ALLIE, Adrian M. GRANT, Devon LYMAN, David JOHNSON, Kenechukwu NWABUFOH
  • Patent number: 11271236
    Abstract: A electrochemical direct heat to electricity converter having a low temperature membrane electrode assembly array and a high temperature membrane electrode assembly array is provided. Additional cells are provided in the low temperature membrane electrode assembly array, which causes an additional amount of the working fluid, namely hydrogen, to be pumped to the high pressure side of the converter. The additional pumped hydrogen compensates for the molecular hydrogen diffusion that occurs through the membranes of the membrane electrode assembly arrays. The MEA cells may be actuated independently by a controller to compensate for hydrogen diffusion.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 8, 2022
    Assignee: JOHNSON IP HOLDING, LLC
    Inventor: Lonnie G. Johnson
  • Publication number: 20220059859
    Abstract: A heat to electricity converter including a working fluid and a pair of membrane electrode assemblies (MEA) is provided. Each MEA includes a pair of electrodes which are electron conductive and permeable to the working fluid, and a thin film electrolyte membrane sandwiched between the electrodes. The membrane is conductive of ions of the working fluid and has a thickness of 0.03 ?m to 10 ?m. At least one electrode of each MEA includes a non-porous and dense metal. One electrode of each MEA is in contact with the working fluid at a first, higher pressure, while the other electrode is in contact with the working fluid at a second, lower pressure. The first MEA is configured to compress the working fluid from the second pressure to the first pressure, while the second MEA is configured to expand the working fluid from the first pressure to the second pressure.
    Type: Application
    Filed: August 24, 2021
    Publication date: February 24, 2022
    Inventors: Lonnie G. Johnson, David Ketema JOHNSON
  • Publication number: 20220037721
    Abstract: An electrochemical direct heat to electricity converter includes a primary thermal energy source; a working fluid; an electrochemical cell comprising at least one membrane electrode assembly including a first porous electrode, a second porous electrode and at least one membrane, wherein the at least one membrane is sandwiched between the first and second porous electrodes and is a conductor of ions of the working fluid; an energy storage reservoir; and an external load. The electrochemical cell operates on heat to produce electricity. When thermal energy available from the primary thermal energy source is greater than necessary to meet demands of the external load, excess energy is stored in the energy storage reservoir, and when the thermal energy available from the primary thermal energy source is insufficient to meet the demands of the external load, at least a portion of the excess energy stored in the energy storage reservoir is used to supply power to the external load.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 3, 2022
    Inventor: Lonnie G. JOHNSON
  • Patent number: RE49205
    Abstract: A rechargeable lithium air battery is provided. The battery contains a ceramic separator forming an anode chamber, a molten lithium anode contained in the anode chamber, an air cathode, and a non-aqueous electrolyte. The cathode has a temperature gradient comprising a low temperature region and a high temperature region, and the temperature gradient provides a flow system for reaction product produced by the battery.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: September 6, 2022
    Assignee: JOHNSON IP HOLDING, LLC
    Inventors: Lonnie G. Johnson, Tedric D. Campbell