Patents by Inventor Lorcan Coffey

Lorcan Coffey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150174365
    Abstract: The present invention relates to a method of thermal treatment of thermally responsive material wherein areas in or on the material to be thermally treated are defined and thermal energy is inputted on or into the defined areas in order to change/influence the material characteristics. The present invention further relates to medical devices or parts thereof manufactured at least in part from thermally responsive material by a process comprising at least one step of thermal treatment of this thermally responsive material.
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Louise Corcoran, Lorcan Coffey, Andrew Jeffrey, Hartmut Grathwohl, Günter Lorenz
  • Publication number: 20150165171
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 18, 2015
    Applicant: ABBOTT LABORATORIES
    Inventors: Boris Warnack, Judith Hartwig, Silke Pschibl, Travis Richard Yribarren, Randolf Von Oepen, Thomas Rieth, Lorcan Coffey, Arik Zucker
  • Patent number: 8986339
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Abbott Laboratories
    Inventors: Boris Warnack, Judith Hartwig, Silke Pschibl, Travis Richard Yribarren, Randolf Von Oepen, Thomas Rieth, Lorcan Coffey, Arik Zucker
  • Patent number: 8974426
    Abstract: The present invention relates to a method of thermal treatment of thermally responsive material wherein areas in or on the material to be thermally treated are defined and thermal energy is inputted on or into the defined areas in order to change/influence the material characteristics. The present invention further relates to medical devices or parts thereof manufactured at least in part from thermally responsive material by a process comprising at least one step of thermal treatment of this thermally responsive material.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 10, 2015
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Louise Corcoran, Lorcan Coffey, Andrew Jeffrey, Hartmut Gratwohl, Günter Lorenz
  • Publication number: 20130001192
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Inventors: Boris WARNACK, Judith HARTWIG, Silke PSCHIBL, Travis Richard YRIBARREN, Randolf VON OEPEN, Thomas RIETH, Lorcan COFFEY, Arik ZUCKER
  • Patent number: 8292913
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: October 23, 2012
    Assignee: Abbott Laboratories
    Inventors: Boris Warnack, Judith Hartwig, Silke Pschibl, Travis Richard Yribarren, Randolf Von Oepen, Thomas Rieth, Lorcan Coffey, Arik Zucker
  • Publication number: 20120203172
    Abstract: The present invention relates to a catheter for POBA or stent delivery applications. More specifically, the present invention relates to a balloon catheter having a soft distal tip member and methods for manufacturing the same.
    Type: Application
    Filed: January 12, 2012
    Publication date: August 9, 2012
    Applicant: ABBOTT LABORATORIES VASCULAR ENTERPRISES LIMITED
    Inventors: Andrew Jeffrey, Louise Corcoran, Lorcan Coffey, Arik Zucker, Kay Unzicker, Zdravkica Dzakula
  • Publication number: 20110284498
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Application
    Filed: June 2, 2011
    Publication date: November 24, 2011
    Applicant: Abbott Laboratories
    Inventors: Boris Warnack, Judith Hartwig, Silke Pschibl, Travis Richard Yribarren, Randolf Von Oepen, Thomas Rieth, Lorcan Coffey, Arik Zucker
  • Patent number: 7993303
    Abstract: A support catheter that can puncture a heart septum with a guidewire without buckling and that can access difficult to reach arteries such as carotid or renal arteries from the aorta under difficult circumstances is provided. The support catheter comprises a catheter body having a proximal end, a distal end, and an interior wall surface defining a first lumen extending from the proximal end toward the distal end. A second lumen is disposed between the interior wall surface and an outer surface of the catheter body. A plurality of stiffening members is disposed around the second lumen, the plurality of stiffening members being engageable to selectively stiffen the catheter body. In another configuration, the catheter further comprises a second plurality of stiffening members disposed between the first lumen and the second lumen.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 9, 2011
    Assignee: Abbott Laboratories
    Inventors: Randolf Von Oepen, Ian J. Clark, Lorcan Coffey, Thomas Rieth, Richard Newhauser, Travis Yribarren, Marc Gianotti, Bernhard Uihlein
  • Publication number: 20110172696
    Abstract: The present invention relates to a catheter having a soft distal tip that can be manufactured at lower cost than catheters in the prior art. In one embodiment, the catheter is produced by coupling a soft sleeve to the distal end of a catheter tube. The sleeve may affixed to the catheter tube under temperature and pressure conditions that cause the proximal end of the sleeve to taper against the outer surface of the catheter tube, avoiding or minimizing discontinuities in the insertion profile of the catheter, and that also cause the inner wall of the sleeve to taper against the distal end of the catheter tube, avoiding or minimizing discontinuities in the lumen of the catheter.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 14, 2011
    Applicant: ABBOTT LABORATORIES VASCULAR ENTERPRISES LIMITED
    Inventors: Andrew Jeffrey, Louise Corcoran, Lorcan Coffey, Arik Zucker, Kay Unzicker, Zdravkica Dzakula, Ib Joergensen, Randolf von Oepen
  • Patent number: 7967836
    Abstract: A dilatation balloon is fabricated according to a process that forms cavities and indentations in the balloon and/or catheter sections. A length of tubing is axially elongated and radially expanded in a form to provide the requisite biaxial orientation and strength. Then, an excimer laser or another type of laser or mechanical material removal tool is used to remove the polymeric material, virtually without thermal effects. Cavities in the sleeve sections of the balloon are defined and if desired, indentations in the cone sections are defined. Material removal, particularly near the balloon sleeves enables a thinner, more flexible bonding area between the catheter shaft and the balloon. Further, the indentations along the cone sections enables tighter wrapping of the balloon for a reduced delivery profile. Rigidity near the sleeves is reduced for better maneuverability of the catheter in tortuous passageways.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: June 28, 2011
    Assignee: Abbott Laboratories
    Inventors: Boris Warnack, Judith Hartwig, Silke Pschibl, Travis Richard Yribarren, Randolf Von Oepen, Thomas Rieth, Lorcan Coffey, Arik Zucker
  • Patent number: 7875067
    Abstract: Apparatus for delivering and deploying an expandable stent having a protection sheath within a blood vessel is provided. The apparatus comprises a fluid pressure device that is coupled with a retraction device for the protection sheath, wherein the stent is automatically deployed by the fluid pressure device after retraction of the protection sheath.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 25, 2011
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Randolf Von Oepen, Volker Trösken, Volker Marx, Armin Stopper, Louise Balfe, Lorcan Coffey
  • Patent number: 7862541
    Abstract: The present invention relates to a catheter having a soft distal tip that can be manufactured at lower cost than catheters in the prior art. In one embodiment, the catheter is produced by coupling a soft sleeve to the distal end of a catheter tube. The sleeve may affixed to the catheter tube under temperature and pressure conditions that cause the proximal end of the sleeve to taper against the outer surface of the catheter tube, avoiding or minimizing discontinuities in the insertion profile of the catheter, and that also cause the inner wall of the sleeve to taper against the distal end of the catheter tube, avoiding or minimizing discontinuities in the lumen of the catheter.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: January 4, 2011
    Assignee: Abbott Laboratories Vascular Enterprises Limited
    Inventors: Andrew Jeffrey, Louise Balfe, Lorcan Coffey, Arik Zucker, Kay Unzicker, Zdravkica Dzakula, Ib Joergensen, Randolf von Oepen
  • Patent number: 7815627
    Abstract: The invention includes a catheter having an elongate main body having a proximal section and a distal section. The elongate main body further includes a plurality of stiffening members disposed along the length of the elongate main body. At least one stiffening member includes a plurality of clusters including helical turns or rotations disposed circumferentially about a tubular member and along the length of the cluster. The clusters can be configured to vary flexibility along the length of the tubular member. The catheter can include a sheath having a stationary section and a retractable section.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: October 19, 2010
    Assignee: Abbott Laboratories
    Inventors: Randolf Von Oepen, Axel Grandt, Lorcan Coffey, Louise Balfe, Andrew Jeffrey, Ib Joergensen, Bodo Quint
  • Publication number: 20090318861
    Abstract: The present invention relates to a method of thermal treatment of thermally responsive material wherein areas in or on the material to be thermally treated are defined and thermal energy is inputted on or into the defined areas in order to change/influence the material characteristics. The present invention further relates to medical devices or parts thereof manufactured at least in part from thermally responsive material by a process comprising at least one step of thermal treatment of this thermally responsive material.
    Type: Application
    Filed: November 14, 2006
    Publication date: December 24, 2009
    Applicant: ABBOTT LABORATORIES VASCULAR ENTERPRISES LIMITED
    Inventors: Louise Corcoran, Lorcan Coffey, Andrew Jeffrey, Hartmut Gratwohl, Günter Lorenz
  • Publication number: 20090292241
    Abstract: A catheter arrangement is described that is arranged to permit a guide wire or other structure to be fed laterally from the region of an expandable working element. The catheter includes an elongate flexible tubular member and an inflatable structure carried by a distal portion of the flexible tubular member. The flexible tubular member has a guide wire lumen and at least one fluid supply lumen that is in fluid communication with the inflatable structure. The inflatable structure includes at least one, and preferably two, inflatable members (which may take the form of balloons). In the case of two inflatable members, the first and second inflatable members are radially spaced about the guide wire lumen such that at least one gap is formed between the inflatable members. With this arrangement, the distal end of a guide wire may be advanced through the guide lumen and out of a side opening such that the guide wire passes laterally between the first and second inflatable members.
    Type: Application
    Filed: July 20, 2009
    Publication date: November 26, 2009
    Applicant: ABBOTT LABORATORIES
    Inventors: Randolf von Oepen, Lorcan Coffey, Thomas Rieth, Travis R. Yribarren, Arik Zucker
  • Patent number: 7578831
    Abstract: A catheter arrangement is described that is arranged to permit a guide wire or other structure to be fed laterally from the region of an expandable working element. The catheter includes an elongate flexible tubular member and an inflatable structure carried by a distal portion of the flexible tubular member. The flexible tubular member has a guide wire lumen and at least one fluid supply lumen that is in fluid communication with the inflatable structure. The inflatable structure includes at least one, and preferably two, inflatable members (which may take the form of balloons). In the case of two inflatable members, the first and second inflatable members are radially spaced about the guide wire lumen such that at least one gap is formed between the inflatable members. With this arrangement, the distal end of a guide wire may be advanced through the guide lumen and out of a side opening such that the guide wire passes laterally between the first and second inflatable members.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 25, 2009
    Assignee: Abbott Laboratories
    Inventors: Randolf von Oepen, Lorcan Coffey, Thomas Rieth, Travis R. Yribarren, Arik Zucker
  • Publication number: 20080140174
    Abstract: A variety of methods are described that pre-condition a balloon used in a balloon catheter in order to increase its flexibility. Generally, the membrane that forms the balloon is crumpled in order to induce a large number of irregular crumples in the balloon. The crinkling of the balloon improves its flexibility and thus the flexibility of the catheter. Most typically, torsion and/or compression are applied to the balloon membrane in order to induce the crumpling. The described crumpling can be used to increase the flexibility of a balloon of a given strength in a variety of catheters, including angioplasty catheters and stent delivery catheters. In stent delivery catheters, the resulting crinkles also have the additional benefit of improving stent retention.
    Type: Application
    Filed: August 17, 2006
    Publication date: June 12, 2008
    Inventors: Randolf von Oepen, Lorcan Coffey, Thomas Rieth, Travis R. Yribarren, Arik Zucker
  • Publication number: 20080097404
    Abstract: Various improved catheter marking arrangements are described. In a first aspect of the invention, a first longitudinally extending radiopaque marker is positioned on the catheter. A second longitudinally extending radiopaque marker is positioned opposite the first marker at a rotational orientation that is approximately 180 degrees offset from the first marker. The second marker has a length that is sufficiently different from the first marker such that a surgeon utilizing the catheter in a surgical procedure would be able to readily differentiate the first and second markers in a fluoroscopic image based on their respective lengths in order to determine the rotational orientation of the catheter. In some embodiments, the catheter includes a lumen that has a side port that opens to a side of the catheter. The first marker is composed of a pair of axially aligned marker segments located on opposite ends of the side port.
    Type: Application
    Filed: August 16, 2006
    Publication date: April 24, 2008
    Inventors: Travis R. Yribarren, Randolf von Oepen, Lorcan Coffey, Thomas Rieth, Arik Zucker
  • Publication number: 20080058722
    Abstract: A support catheter that can puncture a heart septum with a guidewire without buckling and that can access difficult to reach arteries such as carotid or renal arteries from the aorta under difficult circumstances is provided. The support catheter comprises a catheter body having a proximal end, a distal end, and an interior wall surface defining a first lumen extending from the proximal end toward the distal end. A second lumen is disposed between the interior wall surface and an outer surface of the catheter body. A plurality of stiffening members is disposed around the second lumen, the plurality of stiffening members being engageable to selectively stiffen the catheter body. In another configuration, the catheter further comprises a second plurality of stiffening members disposed between the first lumen and the second lumen.
    Type: Application
    Filed: April 20, 2007
    Publication date: March 6, 2008
    Applicant: ABBOTT LABORATORIES
    Inventors: Randolf Von Oepen, Ian Clark, Lorcan Coffey, Thomas Reith, Richard Newhauser, Travis Yribarren, Marc Gianotti, Bernhard Uihlein