Patents by Inventor Loren A. Chow

Loren A. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8617945
    Abstract: A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Publication number: 20120142166
    Abstract: A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
    Type: Application
    Filed: February 3, 2012
    Publication date: June 7, 2012
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W.K. Liu
  • Patent number: 8143646
    Abstract: A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 27, 2012
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Patent number: 7851781
    Abstract: Various embodiments provide a buffer layer that is grown over a silicon substrate that provides desirable device isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Patent number: 7687799
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a GaSb nucleation layer on a substrate, forming a Ga(Al)AsSb buffer layer on the GaSb nucleation layer, forming an In0.52Al0.48As bottom barrier layer on the Ga(Al)AsSb buffer layer, and forming a graded InxAl1-xAs layer on the In0.52Al0.48As bottom barrier layer thus enabling the fabrication of low defect, device grade InGaAs based quantum well structures.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: March 30, 2010
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Peter G. Tolchinsky, Loren A. Chow, Dmitri Loubychev, Joel M. Fastenau, Amy W. K. Liu
  • Publication number: 20090315018
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a GaSb nucleation layer on a substrate, forming a Ga(Al)AsSb buffer layer on the GaSb nucleation layer, forming an In0.52Al0.48As bottom barrier layer on the Ga(Al)AsSb buffer layer, and forming a graded InxAl1-xAs layer on the In0.52Al0.48As bottom barrier layer thus enabling the fabrication of low defect, device grade InGaAs based quantum well structures.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Inventors: Mantu K. Hudait, Peter G. Tolchinsky, Loren A. Chow, Dmitri Loubychev, Joel M. Fastenau, Amy W.K. Liu
  • Publication number: 20090218596
    Abstract: Various embodiments provide a buffer layer that is grown over a silicon substrate that provides desirable device isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
    Type: Application
    Filed: February 13, 2009
    Publication date: September 3, 2009
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Patent number: 7573059
    Abstract: A device grade III-V quantum well structure formed on a silicon substrate using a composite buffer architecture and the method of manufacture is described. Embodiments of the present invention enable III-V InSb quantum well device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, an InSb quantum well layer is sandwiched between two larger band gap barrier layers. In an embodiment of the present invention, InSb quantum well layer is strained. In a specific embodiment, the two larger band gap barrier layers are graded.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: August 11, 2009
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Dmitri Loubychev, Joel M. Fastenau, Amy W. K. Liu
  • Patent number: 7494911
    Abstract: Various embodiments proved a buffer layer that is grown over a silicon substrate that provides desirable isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: February 24, 2009
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Publication number: 20080073639
    Abstract: A device grade III-V quantum well structure formed on a silicon substrate using a composite buffer architechture and the method of manufacture is described. Embodiments of the present invention enable III-V InSb quantum well device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, an InSb quantum well layer is sandwiched between two larger band gap barrier layers. In an embodiment of the present invention, InSb quantum well layer is strained. In a specific embodiment, the two larger band gap barrier layers are graded.
    Type: Application
    Filed: August 2, 2006
    Publication date: March 27, 2008
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Dmitri Loubychev, Joel M. Fastenau, Amy W.K. Liu
  • Publication number: 20080076235
    Abstract: Various embodiments proved a buffer layer that is grown over a silicon substrate that provides desirable isolation for devices formed relative to III-V material device layers, such as InSb-based devices, as well as bulk thin film grown on a silicon substrate. In addition, the buffer layer can mitigate parallel conduction issues between transistor devices and the silicon substrate. In addition, the buffer layer addresses and mitigates lattice mismatches between the film relative to which the transistor is formed and the silicon substrate.
    Type: Application
    Filed: September 27, 2006
    Publication date: March 27, 2008
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W. K. Liu
  • Publication number: 20080032478
    Abstract: A stacking fault and twin blocking barrier for forming a III-V device layer on a silicon substrate and the method of manufacture is described. Embodiments of the present invention enable III-V InSb device layers with defect densities below 1×108 cm?2 to be formed on silicon substrates. In an embodiment of the present invention, a buffer layer is positioned between a III-V device layer and a silicon substrate to glide dislocations. In an embodiment of the present invention, GaSb buffer layer is selected on the basis of lattice constant, band gap, and melting point to prevent many lattice defects from propagating out of the buffer into the III-V device layer. In a specific embodiment, a III-V InSb device layer is formed directly on the GaSb buffer.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 7, 2008
    Inventors: Mantu K. Hudait, Mohamad A. Shaheen, Loren A. Chow, Peter G. Tolchinsky, Joel M. Fastenau, Dmitri Loubychev, Amy W.K. Liu
  • Patent number: 6876081
    Abstract: An apparatus including a contact point formed on a device layer of a circuit substrate or interconnect layer on a substrate; a first dielectric layer including cubic boron nitride on the substrate; and a different second dielectric layer on the substrate and separated from the device layer by the first dielectric layer. Also, an apparatus including a circuit substrate including a device layer and a composite dielectric layer. The composite dielectric includes a first dielectric material including cubic boron nitride and a different second dielectric material. The first dielectric material surrounds the second dielectric material.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: April 5, 2005
    Assignee: Intel Corporation
    Inventor: Loren A. Chow
  • Publication number: 20040046259
    Abstract: An apparatus including a contact point formed on a device layer of a circuit substrate or interconnect layer on a substrate; a first dielectric layer including cubic boron nitride on the substrate; and a different second dielectric layer on the substrate and separated from the device layer by the first dielectric layer. Also, an apparatus including a circuit substrate including a device layer and a composite dielectric layer. The composite dielectric includes a first dielectric material including cubic boron nitride and a different second dielectric material. The first dielectric material surrounds the second dielectric material.
    Type: Application
    Filed: September 8, 2003
    Publication date: March 11, 2004
    Inventor: Loren A. Chow
  • Patent number: 6674146
    Abstract: An apparatus including a contact point on a substrate; a first dielectric layer comprising a material having a dielectric constant less than five formed on the contact point, and a different second dielectric layer formed on the substrate and separated from the contact point by the first dielectric layer. Collectively, the first and second dielectric layers comprise a composite dielectric layer having a composite dielectric constant value. The contribution of the first dielectric layer to the composite dielectric value is up to 20 percent. Also, a method including depositing a composite dielectric layer over a contact point on a substrate, the composite dielectric layer comprising a first material having a dielectric constant less than 5 and a second different second material, and forming a conductive interconnection through the composite dielectric layer to the contact point.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: January 6, 2004
    Assignee: Intel Corporation
    Inventor: Loren A. Chow
  • Patent number: 5157240
    Abstract: A gaseous deposition source for providing a deposition material that emanates from a crucible having multiple thin film heating elements formed thereon, with each adjacent pair being separated by an insulating layer therebetween. A gaseous deposition source can have a crucible with a cover thereon with one or more apertures therein and with thin film heating elements on that cover about such apertures. A substrate heater may be used formed of thin film heating elements provided on a base.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: October 20, 1992
    Inventor: Loren A. Chow
  • Patent number: 5031229
    Abstract: A gaseous deposition source for providing a deposition material that emanates from a crucible having mulitple thin film heating elements formed thereon, with each adjacent pair being separated by an insulating layer therebetween. A gaseous deposition source can have a crucible with a cover thereon with one or more apertures therein and with thin film heating elements on that cover about such apertures. A substrate heater may be used formed of thin film heating elements provided on a base.
    Type: Grant
    Filed: September 13, 1989
    Date of Patent: July 9, 1991
    Inventor: Loren A. Chow
  • Patent number: 4997422
    Abstract: A needle shielding device attachable to a hypodermic syringe for protecting a user from contacting the tip of a needle. The device comprises a generally cylindrical needle shield slidably engaging a syringe body for protecting a user from being stuck by the needle tip of the syringe. The needle shield continuously frictionally engages and grips the syringe body as the shield is moved between a retracted position wherein the needle extends forwardly of the needle shield and a extended position wherein the needle tip is protectively enclosed by the needle shield.
    Type: Grant
    Filed: January 31, 1989
    Date of Patent: March 5, 1991
    Inventors: Peter P. Chow, Josephine N. Lo, Loren A. Chow
  • Patent number: 4966138
    Abstract: A puncture protector having a flexible backing with adhesive on one side thereof and a shielding arrangement for blocking passage of needles, both of which can be conformed to that portion of the body of the needle user, often the fingers, which is desired to be protected.
    Type: Grant
    Filed: March 29, 1989
    Date of Patent: October 30, 1990
    Inventors: Peter P. Chow, Josephine N. Lo, Loren A. Chow