Patents by Inventor Loren J. Swenson

Loren J. Swenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151782
    Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line.
    Type: Application
    Filed: November 22, 2023
    Publication date: May 9, 2024
    Inventors: Loren J. Swenson, Emile M. Hoskinson, Mark H. Volkmann, Andrew J. Berley, George E.G. Sterling, Jed D. Whittaker
  • Publication number: 20240138268
    Abstract: A method of fabrication of a superconducting device includes forming a first portion of the superconducting device on a first chip, a second portion of the superconducting device on a second chip, and bonding the first chip to the second chip, arranged in a flip-chip configuration. The first portion of the superconducting device on the first chip includes a dissipative portion of the superconducting device. A multi-layer superconducting integrated circuit is implemented so that noise-susceptible superconducting devices are positioned in wiring layers formed from a low-noise superconductive material and that underlie wiring layers that are formed from a different superconductive material.
    Type: Application
    Filed: February 17, 2022
    Publication date: April 25, 2024
    Inventors: Colin C. Enderud, Mohammad H. Amin, Loren J. Swenson
  • Patent number: 11957065
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 9, 2024
    Assignee: 1372934 B.C. LTD.
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 11941486
    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: March 26, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Steven P. Reinhardt, Andrew D. King, Loren J. Swenson, Warren T. E. Wilkinson, Trevor Michael Lanting
  • Patent number: 11879950
    Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 23, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Loren J. Swenson, Emile M. Hoskinson, Mark H. Volkmann, Andrew J. Berkley, George E. G. Sterling, Jed D. Whittaker
  • Patent number: 11874344
    Abstract: A device is dynamically isolated via a broadband switch that includes a plurality of cascade elements in series, wherein each cascade element comprises a first set of SQUIDs in series, a matching capacitor, and a second set of SQUIDs in series. The broadband switch is set to a passing state via flux bias lines during programming and readout of the device and set to a suppression state during device's calculation to reduce operation errors at the device. A device is electrically isolated from high-frequencies via an unbiased broadband switch. A device is coupled to a tunable thermal bath that includes a broadband switch.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: January 16, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Loren J. Swenson, Andrew J. Berkley, Mark H. Volkmann, George E. G. Sterling, Jed D. Whittaker
  • Patent number: 11847534
    Abstract: A superconducting readout system employing a microwave transmission line, and a microwave superconducting resonator communicatively coupled to the microwave transmission line, and including a superconducting quantum interference device (SQUID), may be advantageously calibrated at least in part by measuring a resonant frequency of the microwave superconducting resonator in response to a flux bias applied to the SQUID, measuring a sensitivity of the resonant frequency in response to the flux bias, and selecting an operating frequency and a sensitivity of the microwave superconducting resonator based at least in part on a variation of the resonant frequency as a function of the flux bias. The flux bias may be applied to the SQUID by an interface inductively coupled to the SQUID. Calibration of the superconducting readout system may also include determining at least one of a propagation delay, a microwave transmission line delay, and a microwave transmission line phase offset.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 19, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jed D. Whittaker, Loren J. Swenson, Ilya V. Perminov, Abraham J. Evert, Peter D. Spear, Mark H. Volkmann, Catia Baron Aznar, Michael S. Babcock
  • Patent number: 11839164
    Abstract: Addressing a superconducting flux storage device may include applying a bias current, a low-frequency flux bias, and a high-frequency flux bias in combination to cause a combined address signal level to exceed a defined address signal latching level for the superconducting flux storage device. A bias current that, in combination with a low-frequency flux bias and a high-frequency flux bias, causes a combined address signal level to exceed a defined address signal latching level for a superconducting flux storage device is at least reduced by an asymmetry in the Josephson junctions of the CJJ. A low-frequency flux bias that, in combination with a bias current and a high-frequency flux bias, causes a combined address signal level to exceed a defined address signal latching level for a superconducting flux storage device is at least reduced by an asymmetry in the Josephson junctions of the CJJ.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: December 5, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Loren J. Swenson, George E. G. Sterling, Christopher B. Rich
  • Publication number: 20230325695
    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 12, 2023
    Inventors: Steven P. Reinhardt, Andrew D. King, Loren J. Swenson, Warren T.E. Wilkinson, Trevor Michael Lanting
  • Patent number: 11730066
    Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: August 15, 2023
    Assignee: 1372934 B.C. LTD.
    Inventors: Mark W. Johnson, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Kelly T. R. Boothby, Loren J. Swenson, Emile M. Hoskinson, Christopher B. Rich, Jan E. S. Johansson
  • Publication number: 20230204691
    Abstract: A device is dynamically isolated via a broadband switch that includes a plurality of cascade elements in series, wherein each cascade element comprises a first set of SQUIDs in series, a matching capacitor, and a second set of SQUIDs in series. The broadband switch is set to a passing state via flux bias lines during programming and readout of the device and set to a suppression state during device's calculation to reduce operation errors at the device. A device is electrically isolated from high-frequencies via an unbiased broadband switch. A device is coupled to a tunable thermal bath that includes a broadband switch.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 29, 2023
    Inventors: Loren J. Swenson, Andrew J. Berkley, Mark H. Volkmann, George E.G. Sterling, Jed D. Whittaker
  • Publication number: 20230189665
    Abstract: Superconducting integrated circuits and methods of forming these circuits are discussed. One superconducting integrated circuit has a substrate and a control device formed by a layer of high kinetic inductance material overlying the substrate. The control device has a loop of material, electrical connections between the loop of material and a power line, a coupling element connected to the loop of material, a pair of Josephson junctions that interrupt the loop of material, and an energy storage element connected to the loop of material. An alternative superconducting integrated circuit has a kinetic inductance device formed in a high kinetic inductance layer. The device has a compound Josephson junction structure with two parallel current paths with respective Josephson junctions, a loop of material connected to the compound Josephson junction structure, and a coupling structure. The circuit also has an additional device that couples to the coupling structure.
    Type: Application
    Filed: May 7, 2021
    Publication date: June 15, 2023
    Inventor: Loren J. Swenson
  • Patent number: 11663512
    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: May 30, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Steven P. Reinhardt, Andrew D. King, Loren J. Swenson, Warren T. E. Wilkinson, Trevor Michael Lanting
  • Publication number: 20230143506
    Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures.
    Type: Application
    Filed: August 11, 2021
    Publication date: May 11, 2023
    Inventors: Mark W. Johnson, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Kelly T. R. Boothby, Loren J. Swenson, Emile M. Hoskinson, Christopher B. Rich, Jan E. S. Johansson
  • Patent number: 11561269
    Abstract: A device is dynamically isolated via a broadband switch that includes a plurality of cascade elements in series, wherein each cascade element comprises a first set of SQUIDs in series, a matching capacitor, and a second set of SQUIDs in series. The broadband switch is set to a passing state via flux bias lines during programming and readout of the device and set to a suppression state during device's calculation to reduce operation errors at the device. A device is electrically isolated from high-frequencies via an unbiased broadband switch. A device is coupled to a tunable thermal bath that includes a broadband switch.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 24, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Loren J. Swenson, Andrew J. Berkley, Mark H. Volkmann, George E. G. Sterling, Jed D. Whittaker
  • Publication number: 20230006324
    Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.
    Type: Application
    Filed: July 12, 2022
    Publication date: January 5, 2023
    Inventors: Jed D. Whittaker, Loren J. Swenson, Mark H. Volkmann
  • Patent number: 11424521
    Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 23, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jed D. Whittaker, Loren J. Swenson, Mark H. Volkmann
  • Publication number: 20220222558
    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 14, 2022
    Inventors: Steven P. Reinhardt, Andrew D. King, Loren J. Swenson, Warren T.E. Wilkinson, Trevor Michael Lanting
  • Publication number: 20220123048
    Abstract: A circuit can include a galvanic coupling of a coupler to a qubit by a segment of kinetic inductance material. The circuit can include a galvanic kinetic inductance coupler having multiple windings. The circuit can include a partially-galvanic coupler having multiple windings. The partially-galvanic coupler can include a magnetic coupling and a galvanic coupling. The circuit can include an asymmetric partially-galvanic coupler having a galvanic coupling and a first magnetic coupling to one qubit and a second magnetic coupling to a second qubit. The circuit can include a compact kinetic inductance qubit having a qubit body loop comprising a kinetic inductance material. A multilayer integrated circuit including a kinetic inductance layer can form a galvanic kinetic inductance coupling. A multilayer integrated circuit including a kinetic inductance layer can form at least a portion of a compact kinetic inductance qubit body loop.
    Type: Application
    Filed: February 13, 2020
    Publication date: April 21, 2022
    Inventors: Loren J. Swenson, George E.G. Sterling, Mark H. Volkmann, Colin C. Enderud
  • Patent number: 11263547
    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: March 1, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Steven P. Reinhardt, Andrew D. King, Loren J. Swenson, Warren T. E. Wilkinson, Trevor Michael Lanting