Patents by Inventor Loren K. Starcher

Loren K. Starcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9670841
    Abstract: Systems and methods are provided for varying the exhaust gas recycle circuit of low emission gas turbines. In one or more embodiments, the systems and methods incorporate alternatives to the use of a direct contact cooler. In the same or other embodiments, the systems and methods incorporate alternatives intended to reduce or eliminate the erosion or corrosion of compressor blades due to the presence of acidic water droplets in the recycled gas stream.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 6, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Loren K. Starcher, Omar Angus Sites
  • Patent number: 9599070
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 21, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20170009652
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Inventors: Narasimhan SUNDARAM, Ramesh GUPTA, Hans THOMANN, Hugo S. CARAM, Loren K. STARCHER, Franklin F. MITTRICKER, Simon C. WESTON, Scott J. WEIGEL
  • Patent number: 9476356
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 25, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Ramesh Gupta, Hans Thomann, Hugo S. Caram, Loren K. Starcher, Franklin F. Mittricker, Simon C. Weston, Scott J. Weigel
  • Patent number: 9346721
    Abstract: The invention relates to hydrocarbon conversion processes, to equipment useful in such processes, to the products of such hydrocarbon conversion processes and the use thereof, and to the use of energy derived from such processes.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 24, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Mark Davis, Mark L. Merrifield, Keith H. Kuechler, Loren K. Starcher
  • Patent number: 9222671
    Abstract: The present invention relates to methods and systems for controlling a combustion reaction and the products thereof. One embodiment includes a combustion control system having an oxygenation stream substantially comprising oxygen and CO2 and having an oxygen to CO2 ratio, then mixing the oxygenation stream with a combustion fuel stream and combusting in a combustor to generate a combustion products stream having a temperature and a composition detected by a temperature sensor and an oxygen analyzer, respectively, the data from which are used to control the flow and composition of the oxygenation and combustion fuel streams. The system may also include a gas turbine with an expander and having a load and a load controller in a feedback arrangement.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 29, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Loren K. Starcher, Chad Rasmussen, Richard A. Huntington, Frank Hershkowitz
  • Publication number: 20150240717
    Abstract: A system and methods for increasing a combustibility of a low BTU natural gas are provided herein. The method includes increasing the adiabatic flame temperature of the low BTU natural gas using heavy hydrocarbons, wherein the heavy hydrocarbons include compounds with a carbon number of at least two. The method also includes burning the low BTU natural gas in a gas turbine.
    Type: Application
    Filed: September 30, 2013
    Publication date: August 27, 2015
    Inventors: Loren K. STARCHER, Franklin F. MITTRICKER, P. Scott NOTHROP, Charles J. MART
  • Patent number: 9027321
    Abstract: Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Eric D Nelson, Moses Minta, Loren K Starcher, Franklin Mittricker, Omar Angus Sites, Jasper L Dickson
  • Patent number: 8984857
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. An alternative system provides for low emission power generation, carbon sequestration, enhanced oil recovery (EOR), or carbon dioxide sales using a hot gas expander and external combustor. Another alternative system provides for low emission power generation using a gas power turbine to compress air in the inlet compressor and generate power using hot carbon dioxide laden gas in the expander. Other efficiencies may be gained by incorporating heat cross-exchange, a desalination plant, co-generation, and other features.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: March 24, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Moses Minta, Franklin F. Mittricker, Peter C. Rasmussen, Loren K. Starcher, Chad C. Rasmussen, James T. Wilkins, Richard W. Meidel, Jr.
  • Publication number: 20140374109
    Abstract: Methods and systems for enhanced carbon dioxide capture in a combined cycle plant are described. A method includes compressing a recycle exhaust gas from a gas turbine system, thereby producing a compressed recycle exhaust gas stream. A purge stream is extracted from the compressed recycle exhaust gas stream. Carbon dioxide is removed from the extracted purge stream using a solid sorbent.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 25, 2014
    Inventors: Robert D. Denton, Himanshu Gupta, Richard A. Huntington, Moses Minta, Franklin F. Mittricker, Loren K. Starcher
  • Publication number: 20140378728
    Abstract: The invention relates to hydrocarbon conversion processes, to equipment useful in such processes, to the products of such hydrocarbon conversion processes and the use thereof, and to the use of energy derived from such processes.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 25, 2014
    Inventors: Stephen Mark Davis, Mark L. Merrifield, Keith H. Kuechler, Loren K. Starcher
  • Publication number: 20140318427
    Abstract: The present invention relates to methods and systems for controlling a combustion reaction and the products thereof. One embodiment includes a combustion control system having an oxygenation stream substantially comprising oxygen and CO2 and having an oxygen to CO2 ratio, then mixing the oxygenation stream with a combustion fuel stream and combusting in a combustor to generate a combustion products stream having a temperature and a composition detected by a temperature sensor and an oxygen analyzer, respectively, the data from which are used to control the flow and composition of the oxygenation and combustion fuel streams. The system may also include a gas turbine with an expander and having a load and a load controller in a feedback arrangement.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Franklin F. Mittricker, Loren K. Starcher, Chad C. Rasmussen, Richard A. Huntington, Frank Hershkowitz
  • Publication number: 20140250908
    Abstract: Systems and methods for controlling the composition of a combustion exhaust gas are provided.
    Type: Application
    Filed: July 1, 2011
    Publication date: September 11, 2014
    Applicants: ExxonMobil Upsteam Research Company, Georgia Tech Research Corporation
    Inventors: Richard Huntington, Chad C. Rasmussen, Franklin F. Mittricker, Tim Lieuwen, Sulabh K. Dhanuka, Himansh Gupta, Moses K. Minta, Loren K. Starcher
  • Publication number: 20140123620
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20140020398
    Abstract: Systems and methods are provided for varying the exhaust gas recycle circuit of low emission gas turbines. In one or more embodiments, the systems and methods incorporate alternatives to the use of a direct contact cooler. In the same or other embodiments, the systems and methods incorporate alternatives intended to reduce or eliminate the erosion or corrosion of compressor blades due to the presence of acidic water droplets in the recycled gas stream.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 23, 2014
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Loren K. Starcher, Omar Angus Sites
  • Publication number: 20140000273
    Abstract: Systems, methods, and apparatus are provided for controlling the oxidant feed in low emission turbine systems to maintain stoichiometric or substantially stoichiometric combustion conditions. In one or more embodiments, such control is achieved through methods or systems that ensure delivery of a consistent mass flow rate of oxidant to the combustion chamber.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 2, 2014
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Loren K. Starcher, Sulabh K. Dhanuka, Omar Angus Sites
  • Publication number: 20130333391
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: NARASIMHAN SUNDARAM, RAMESH GUPTA, HANS THOMANN, HUGO S. CARAM, LOREN K. STARCHER, FRANKLIN F. Mittricker, SIMON C. WESTON, SCOTT J. WEIGEL
  • Publication number: 20130091853
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a gaseous exhaust stream and drive a main compressor. A boost compressor can receive and increase the pressure of the gaseous exhaust stream and inject it into an evaporative cooling tower configured to use an exhaust nitrogen gas having a low relative humidity as an evaporative cooling media. The cooled gaseous exhaust stream is then compressed and recirculated through the system as a diluent to moderate the temperature of the stoichiometric combustion.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 18, 2013
    Inventors: Robert D. Denton, Himanshu Gupta, Richard Huntington, Moses Minta, Franklin F. Mittricker, Loren K. Starcher
  • Publication number: 20130091854
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant derived from enriched air and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a recycle exhaust stream and drive a main compressor. A boost compressor receives and increases the pressure of the recycle exhaust stream and prior to being compressed in a compressor configured to generate the compressed recycle exhaust gas. To promote the stoichiometric combustion of the fuel and increase the CO2 content in the recycle exhaust gas, the enriched air can have an increased oxygen concentration.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 18, 2013
    Inventors: Himanshu Gupta, Richard Huntington, Moses K. Minta, Franklin F. Mittricker, Loren K. Starcher
  • Publication number: 20120247105
    Abstract: Integrated systems and methods for low emission power generation in a hydrocarbon recovery processes are provided. One system includes a control fuel stream, an oxygen stream, a combustion unit, a first power generate on system and a second power generation system. The combustion unit is configured to receive and combust the control fuel stream and the oxygen stream to produce a gaseous combustion stream having carbon dioxide and water. The first power generation system is configured to generate at least one unit of power and a carbon dioxide stream. The second power generation system is configured to receive thermal energy from the gaseous combustion stream and convert the thermal energy into at least one unit of power.
    Type: Application
    Filed: September 17, 2010
    Publication date: October 4, 2012
    Applicant: Exxonmobile Upstream Research Company
    Inventors: Eric D. Nelson, Moses Minta, Loren K. Starcher, Franklin Mittricker, Omar Angus Sites, Jasper L. Dickson