Patents by Inventor Loren S. Berg

Loren S. Berg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11553259
    Abstract: Systems and methods include, for operation on an optical fiber in an optical network with the optical fiber having extended optical spectrum that include a plurality of bands including at least the C-band and one or more additional bands, segmenting the plurality of bands by distance based on different transmission specifications for the plurality of bands based on fiber types and amplifiers used for corresponding bands; and placing one or more channels on the optical fiber in a corresponding band of the plurality of bands based on a distance between nodes associated with each of the one or more channels. The segmenting is based on a metric that is a function of fiber type of the optical fiber and amplifier performance for amplifiers used in the plurality of bands.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, David W. Boertjes, Loren S. Berg
  • Publication number: 20220132228
    Abstract: Systems and methods include, for operation on an optical fiber in an optical network with the optical fiber having extended optical spectrum that include a plurality of bands including at least the C-band and one or more additional bands, segmenting the plurality of bands by distance based on different transmission specifications for the plurality of bands based on fiber types and amplifiers used for corresponding bands; and placing one or more channels on the optical fiber in a corresponding band of the plurality of bands based on a distance between nodes associated with each of the one or more channels. The segmenting is based on a metric that is a function of fiber type of the optical fiber and amplifier performance for amplifiers used in the plurality of bands.
    Type: Application
    Filed: December 6, 2021
    Publication date: April 28, 2022
    Inventors: Michael Y. Frankel, David W. Boertjes, Loren S. Berg
  • Patent number: 11196504
    Abstract: A method includes establishing an extended optical spectrum having multiple channels for transmission of signals within an optical network. The extended optical spectrum includes at least the C-band (i.e., 1530 nm to 1565 nm) plus one or more sub-bands each having a range of wavelengths including at least one optical channel outside the range of the C-band. The method also includes segmenting the extended optical spectrum into a local band and an express band having different transmission specifications. The local band is configured for transmission of signals between nodes having a relatively shorter distance therebetween and the express band is configured for transmission of signals between nodes having a relatively longer distance therebetween. A combination of the sub-bands covers less than the L-band having a range of wavelengths from 1565 nm to 1625 nm and/or less than the S-band having a range of wavelengths from 1460 nm to 1530 nm.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: December 7, 2021
    Assignee: Ciena Corporation
    Inventors: Michael Y. Frankel, David W. Boertjes, Loren S. Berg
  • Patent number: 9973295
    Abstract: A method, an optical node, and an optical network include a power controller configured to bring channels in-service in parallel over multiple cascaded optical nodes quickly, efficiently, and in a non-service affecting manner. The method, node, and network utilize multiple states of a control loop that maintains a stable response in downstream optical nodes as channels are added in parallel. Further, the power controller is configured to operate independently alleviating dependencies on other power controllers and removing the need for coordination between power controllers. The method, node, and network provide efficient turn up of dense wave division multiplexing (DWDM) services which is critical to optical layer functionality including optical layer restoration.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 15, 2018
    Assignee: Ciena Corporation
    Inventors: Choudhury Al Sayeed, David C. Bownass, Loren S. Berg, David W. Boertjes
  • Patent number: 9485013
    Abstract: A method for optical dark section conditioning includes determining a section in an optical network is a dark section that includes connected fiber spans that are functional with no traffic carrying channels present thereon; and causing generation of at least one of broadband noise and a signal at a head end of the dark section. An apparatus configured to perform optical dark section conditioning includes logic configured to determine a section in an optical network is a dark section that includes connected fiber spans that are functional with no traffic carrying channels present thereon; and logic configured to cause generation of at least one of broadband noise and a signal at a head end of the dark section.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: November 1, 2016
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, David Miedema, Loren S. Berg, Dave C. Bownass
  • Patent number: 9419708
    Abstract: A method of analysing performance of an optical fiber link. As a preliminary step, a reference trace indicative of a distributed optical performance of the optical fiber link is derived. During in-service operation of the optical fiber link, an Optical Time Domain Reflectometry (OTDR) sub-system measures an OTDR trace with Raman amplification ON, and a real-time cumulative Raman Gain profile of the optical fiber link is calculated based on the reference trace and the measured OTDR trace.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: August 16, 2016
    Assignee: Ciena Corporation
    Inventors: Mohammad Mehdi Mansouri Rad, David C. Bownass, Loren S. Berg, David W. Boertjes, Jean-Luc Archambault
  • Patent number: 9344191
    Abstract: A method, a controller, and an optical section include performing an analysis to determine an amount of power offset on any in-service channels in an optical section due to a capacity change with a channel; defining a step size to ensure the capacity change does not exceed an offset limit based on the analysis; performing the capacity change in one or more iterations using the step size to limit the capacity change; and performing an optimization between each of the one or more iterations to adjust amplifier gains in the optical section to compensate for offsets on the in-service channels caused by a previous iteration.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: May 17, 2016
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, Mohammad Mehdi Mansouri Rad, Dave C. Bownass, Loren S. Berg
  • Publication number: 20160134390
    Abstract: A method, an optical node, and an optical network include a power controller configured to bring channels in-service in parallel over multiple cascaded optical nodes quickly, efficiently, and in a non-service affecting manner. The method, node, and network utilize multiple states of a control loop that maintains a stable response in downstream optical nodes as channels are added in parallel. Further, the power controller is configured to operate independently alleviating dependencies on other power controllers and removing the need for coordination between power controllers. The method, node, and network provide efficient turn up of dense wave division multiplexing (DWDM) services which is critical to optical layer functionality including optical layer restoration.
    Type: Application
    Filed: January 20, 2016
    Publication date: May 12, 2016
    Inventors: Choudhury AL SAYEED, David C. BOWNASS, Loren S. BERG, David W. BOERTJES
  • Publication number: 20160072576
    Abstract: A method of analysing performance of an optical fiber link. As a preliminary step, a reference trace indicative of a distributed optical performance of the optical fiber link is derived. During in-service operation of the optical fiber link, an Optical Time Domain Reflectometry (OTDR) sub-system measures an OTDR trace with Raman amplification ON, and a real-time cumulative Raman Gain profile of the optical fiber link is calculated based on the reference trace and the measured OTDR trace.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 10, 2016
    Applicant: CIENA CORPORATION
    Inventors: Mohammad Mehdi Mansouri RAD, David C. BOWNASS, Loren S. BERG, David W. BOERTJES, Jean-Luc ARCHAMBAULT
  • Publication number: 20160072575
    Abstract: A method for optical dark section conditioning includes determining a section in an optical network is a dark section that includes connected fiber spans that are functional with no traffic carrying channels present thereon; and causing generation of at least one of broadband noise and a signal at a head end of the dark section. An apparatus configured to perform optical dark section conditioning includes logic configured to determine a section in an optical network is a dark section that includes connected fiber spans that are functional with no traffic carrying channels present thereon; and logic configured to cause generation of at least one of broadband noise and a signal at a head end of the dark section.
    Type: Application
    Filed: November 13, 2015
    Publication date: March 10, 2016
    Inventors: Choudhury A. AL SAYEED, David MIEDEMA, Loren S. BERG, Dave C. BOWNASS
  • Patent number: 9276696
    Abstract: A method, an optical node, and an optical network include a power controller configured to bring channels in-service in parallel over multiple cascaded optical nodes quickly, efficiently, and in a non-service affecting manner. The method, node, and network utilize multiple states of a control loop that maintains a stable response in downstream optical nodes as channels are added in parallel. Further, the power controller is configured to operate independently alleviating dependencies on other power controllers and removing the need for coordination between power controllers. The method, node, and network provide efficient turn up of dense wave division multiplexing (DWDM) services which is critical to optical layer functionality including optical layer restoration.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 1, 2016
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, David C. Bownass, Loren S. Berg, David W. Boertjes
  • Patent number: 9252913
    Abstract: Embodiments of the disclosure are directed to optical dark section conditioning. An embodiment generates at least one of a broadband noise or signal at the head end of a section for a first module of the section; and operates all other modules of the section in gain control mode.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: February 2, 2016
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, David Miedema, Loren S. Berg, Dave C. Bownass
  • Publication number: 20150117858
    Abstract: A method, a controller, and an optical section include performing an analysis to determine an amount of power offset on any in-service channels in an optical section due to a capacity change with a channel; defining a step size to ensure the capacity change does not exceed an offset limit based on the analysis; performing the capacity change in one or more iterations using the step size to limit the capacity change; and performing an optimization between each of the one or more iterations to adjust amplifier gains in the optical section to compensate for offsets on the in-service channels caused by a previous iteration.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: CIENA CORPORATION
    Inventors: Choudhury A. AL SAYEED, Mohammad Mehdi Mansouri Rad, Dave C. BOWNASS, Loren S. BERG
  • Publication number: 20140328583
    Abstract: Embodiments of the disclosure are directed to optical dark section conditioning. An embodiment generates at least one of a broadband noise or signal at the head end of a section for a first module of the section; and operates all other modules of the section in gain control mode.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Applicant: Ciena Corporation
    Inventors: Choudhury A. AL SAYEED, David Miedema, Loren S. Berg, Dave C. Bownass
  • Publication number: 20140112660
    Abstract: A method, an optical node, and an optical network include a power controller configured to bring channels in-service in parallel over multiple cascaded optical nodes quickly, efficiently, and in a non-service affecting manner. The method, node, and network utilize multiple states of a control loop that maintains a stable response in downstream optical nodes as channels are added in parallel. Further, the power controller is configured to operate independently alleviating dependencies on other power controllers and removing the need for coordination between power controllers. The method, node, and network provide efficient turn up of dense wave division multiplexing (DWDM) services which is critical to optical layer functionality including optical layer restoration.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: CIENA CORPORATION
    Inventors: Choudhury A. AL SAYEED, David C. BOWNASS, Loren S. BERG, David W. BOERTJES
  • Publication number: 20030058497
    Abstract: An all-optical switching site for extending a range and agility of an all-optical WDM/DWDM network, by controlling signal intensity balance at each link and performing adaptive dispersion compensation for each dropped channel. The all-optical switching site includes a variable optical attenuator (VOA) for each output channel and an adaptive dispersion compensation module (ADCM) in each drop path. The VOAs of output channels transported by an output optical fiber link are controlled with downstream feedback to adjust channel signal intensity balance. The ADCM comprises an adaptive controller and a dispersion compensation element adapted to apply a different amount of dispersion compensation to a channel it receives. The adaptive controller receives feedback from a receiver or a signal analyzer, in order to optimize the dispersion compensation. The all-optical switching site reduces network operational cost, improves network reach and significantly enhances network agility.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 27, 2003
    Applicant: Nortel Networks Limited
    Inventors: David W. Park, Marc M. Veilleux, Martin Agnew, Nigel Baker, Loren S. Berg
  • Patent number: 6236499
    Abstract: A modular bidirectional optical amplification system includes a multiwavelength dual amplifier building block, a multiwavelength unidirectional booster amplifier BB, a unidirectional and a bidirectional Optical Service Channel (OSC) BB, an Intelligent Optical Terminal Accessway (IOTA) module, and an interleaved filter BB. The dual amplifier BB is available in a C-band version, an E-band version and a hybrid version, and provides unidirectional or bidirectional multichannel amplification. The booster amplifier is available in a C-band version, an E-band version and in a booster plus variant;. one for the C-band and one for E-band. The unidirectional and bidirectional OSC BBs provide a means for OAM&P functionality to the optical network. The IOTA BB provides multiplexing and demultiplexing, and the filter BB provides separation of the signal into grid-1 and grid-2 channels.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: May 22, 2001
    Assignee: Nortel Networks Limited
    Inventors: Loren S. Berg, Mark R. Hinds, Robert W. Keys, Gregory D. May, Alan G. Solheim, Stephane St-Laurent