Patents by Inventor Louis A Avallone

Louis A Avallone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9631567
    Abstract: A fuel control system for a vehicle includes a pressure compensation module that compensates an intake oxygen signal based on an intake pressure signal and that generates a compensated intake oxygen signal. A blow-by estimation module generates an estimated blow-by flow. A purge flow estimation module estimates the purge flow based on the compensated intake oxygen signal and the estimated blow-by flow. A fuel control estimation module reduces fueling to injectors of an engine of the vehicle based on the purge flow.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 25, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Martino Casetti, Scott Jeffrey, Louis A. Avallone
  • Patent number: 9494090
    Abstract: A system according to the principles of the present disclosure includes a misfire detection module and a fuel control module. The misfire detection module detects misfire in a cylinder of an engine. The fuel control module controls a first fuel system to deliver a first fuel to the cylinder and controls a second fuel system to deliver a second fuel to the cylinder. The first fuel and the second fuel are different types of fuel. The fuel control module selectively switches from delivering the first fuel to the cylinder to delivering the second fuel to the cylinder when misfire is detected in the cylinder.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 15, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Tameem K. Assaf, Louis A. Avallone
  • Patent number: 9457789
    Abstract: A fuel control module, based on an engine torque request, fuels N cylinders of an engine using a first fuel system. N is an integer greater than zero. A throttle control module, based on the engine torque request and the fueling of the N cylinders using the first fuel system, opens a throttle valve to a predetermined wide open throttle (WOT) position. A cost module, when the engine torque request is greater than a predetermined torque: determines a first cost value for fueling at least one of the N cylinders of the engine using a second fuel system; and determines a second cost value for adjusting at least one operating parameter other than fueling of the engine. An adjustment module, based on, the first and second cost values, one of: initiates the fueling of the at least one of the N cylinders using the second fuel system; and adjusts of the at least one operating parameter other than fueling of the engine.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: October 4, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Tameem K. Assaf, Louis A. Avallone
  • Publication number: 20150330325
    Abstract: A fuel control module, based on an engine torque request, fuels N cylinders of an engine using a first fuel system. N is an integer greater than zero. A throttle control module, based on the engine torque request and the fueling of the N cylinders using the first fuel system, opens a throttle valve to a predetermined wide open throttle (WOT) position. A cost module, when the engine torque request is greater than a predetermined torque: determines a first cost value for fueling at least one of the N cylinders of the engine using a second fuel system; and determines a second cost value for adjusting at least one operating parameter other than fueling of the engine. An adjustment module, based on, the first and second cost values, one of: initiates the fueling of the at least one of the N cylinders using the second fuel system; and adjusts of the at least one operating parameter other than fueling of the engine.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 19, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Tameem K. ASSAF, Louis A. AVALLONE
  • Publication number: 20150051811
    Abstract: A fuel control system for a vehicle includes a pressure compensation module that compensates an intake oxygen signal based on an intake pressure signal and that generates a compensated intake oxygen signal. A blow-by estimation module generates an estimated blow-by flow. A purge flow estimation module estimates the purge flow based on the compensated intake oxygen signal and the estimated blow-by flow. A fuel control estimation module reduces fueling to injectors of an engine of the vehicle based on the purge flow.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: B. Jerry Song, Martino Casetti, Scott Jeffrey, Louis A. Avallone
  • Patent number: 8855894
    Abstract: An exhaust control system for a vehicle comprises an exhaust system modeling module and an actuator control module. The exhaust system modeling module estimates an input gas temperature, an output gas temperature, a mass temperature, and a pressure for an exhaust system component of an exhaust system implemented in the vehicle. Exhaust gas flows through the exhaust system component. The actuator control module selectively adjusts an engine operating parameter based on at least one of the input gas temperature, the output gas temperature, the mass temperature, and the pressure.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: October 7, 2014
    Inventors: Wajdi B. Hamama, Jaehak Jung, Jon C. Miller, Gregory J. York, David N. Belton, J. Michael Ellenberger, Louis A. Avallone, Wenbo Wang
  • Publication number: 20140257674
    Abstract: A system according to the principles of the present disclosure includes a misfire detection module and a fuel control module. The misfire detection module detects misfire in a cylinder of an engine. The fuel control module controls a first fuel system to deliver a first fuel to the cylinder and controls a second fuel system to deliver a second fuel to the cylinder. The first fuel and the second fuel are different types of fuel. The fuel control module selectively switches from delivering the first fuel to the cylinder to delivering the second fuel to the cylinder when misfire is detected in the cylinder.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Tameem K. Assaf, Louis A. Avallone
  • Patent number: 8706383
    Abstract: A control system includes an engine control module that generates fuel injector command signals for fuel injectors of an engine and engine parameter signals that indicate operating characteristics of the engine. A fuel injector control module communicates with the engine control module via a network. The engine control module transmits the engine parameter signals to the fuel injector control module via the network. The fuel injector control module generates compensated fuel injector signals based on the fuel injector command signals and the engine parameter signals. The engine control module may generate fuel injector command signals for a gaseous fuel mode based on signals received from the fuel injector control module.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 22, 2014
    Inventors: Marc Sauve, Louis A. Avallone, Karl H. Kozole
  • Patent number: 8498799
    Abstract: A first control system for an engine includes first and second control modules. The first control module determines first and second fuel masses for first and second fuel injection systems of the engine, respectively, and that controls the first fuel injection system to inject a first fuel based on the first fuel mass. The second control module controls the second fuel injection system to inject a second fuel based on the second fuel mass. A second control system for an engine includes first and second control modules. The first control module controls a first fuel injection system of the engine to inject a first fuel and selectively disables at least one of a plurality of components of a second fuel injection system of the engine. The second control module controls the second fuel injection system to inject a second fuel.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 30, 2013
    Inventors: James C. Matthews, Jr., Louis A. Avallone, Robert J. Horner, Nicholas John Kalweit, Marc Sauve, Charles E. Leady, Grant Meade, Amir R. Lodhi
  • Publication number: 20120296552
    Abstract: A first control system for an engine includes first and second control modules. The first control module determines first and second fuel masses for first and second fuel injection systems of the engine, respectively, and that controls the first fuel injection system to inject a first fuel based on the first fuel mass. The second control module controls the second fuel injection system to inject a second fuel based on the second fuel mass. A second control system for an engine includes first and second control modules. The first control module controls a first fuel injection system of the engine to inject a first fuel and selectively disables at least one of a plurality of components of a second fuel injection system of the engine. The second control module controls the second fuel injection system to inject a second fuel.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: James C. Matthews, JR., Louis A. Avallone, Robert J. Horner, Nicholas John Kalweit, Marc Sauve, Charles E. Leady, Grant Meade, Amir R. Lodhi
  • Publication number: 20110202256
    Abstract: A control system includes an engine control module that generates fuel injector command signals for fuel injectors of an engine and engine parameter signals that indicate operating characteristics of the engine. A fuel injector control module communicates with the engine control module via a network. The engine control module transmits the engine parameter signals to the fuel injector control module via the network. The fuel injector control module generates compensated fuel injector signals based on the fuel injector command signals and the engine parameter signals. The engine control module may generate fuel injector command signals for a gaseous fuel mode based on signals received from the fuel injector control module.
    Type: Application
    Filed: November 18, 2010
    Publication date: August 18, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Marc Sauve, Louis A. Avallone, Karl H. Kozole
  • Patent number: 7968827
    Abstract: A heating module for an oxygen sensor comprises an estimated mass module, a cumulative mass module, and a temperature control module. The estimated mass module determines an estimated mass of intake air to remove condensation from an exhaust system after startup of an engine. The cumulative mass module determines a cumulative mass of intake air after the engine startup. The temperature control module adjusts a temperature of an oxygen sensor measuring oxygen in the exhaust system to a first predetermined temperature after the engine startup and adjusts the temperature to a second predetermined temperature when the cumulative air mass is greater than the estimated air mass, wherein the second predetermined temperature is greater than the first predetermined temperature.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: June 28, 2011
    Inventors: Justin F. Adams, Louis A. Avallone, Dale W. McKim, Jeffrey A. Sell, John W. Siekkinen, Julian R. Verdejo
  • Patent number: 7937209
    Abstract: A fuel control system of an engine system comprises a pre-catalyst exhaust gas oxygen (EGO) sensor and a control module. The pre-catalyst EGO sensor determines a pre-catalyst EGO signal based on an oxygen concentration of an exhaust gas. The control module determines at least one fuel command and determines at least one expected oxygen concentration of the exhaust gas. The control module determines a final fuel command for the engine system based on the pre-catalyst EGO signal, the fuel command, and the expected oxygen concentration.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 3, 2011
    Inventors: Kenneth P. Dudek, Sai S. V. Rajagopalan, Stephen Yurkovich, Yann G. Guezennec, Shawn W. Midlam-Mohler, Louis A. Avallone, Igor Anilovich
  • Patent number: 7856309
    Abstract: A cold-start control system for an internal combustion engine includes a heat estimation module, a torque request module and a propulsion torque determination module. The heat estimation module determines an exhaust system temperature and estimates heat required to heat an exhaust system to a predetermined temperature. The torque request module generates a torque request based on the estimated heat. The propulsion torque determination module determines a desired engine torque based on the torque request.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 21, 2010
    Inventors: Christopher A Gillanders, John L. Lahti, Louis A. Avallone, Jon C. Miller, Robert C. Simon, Jr., Todd R. Shupe, Jaehak Jung, William R. Cawthorne, Leonard G. Wozniak
  • Patent number: 7848874
    Abstract: A fuel control system includes a pressure comparison module that generates a pressure control signal when a fuel supply pressure is greater than a predetermined pressure value, a temperature comparison module that generates a temperature control signal when a temperature of an engine is greater than a predetermined temperature value, and a pre-crank fuel module that selectively dispenses pre-crank fuel prior to cranking the engine based on the pressure control signal and the temperature control signal. A related fuel control method is also provided.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: December 7, 2010
    Inventors: James D. Hay, Mark D. Carr, Jeffrey M. Hutmacher, Louis A. Avallone, Jon C. Miller
  • Patent number: 7735476
    Abstract: A method comprises detecting a status of a transfer pump for transferring fuel between a first fuel source and a second fuel source; receiving a fuel trim value and a vehicle operating parameter; and calculating a fuel composition of one of the first fuel source and second fuel source based on the fuel trim value, the transfer pump status and the vehicle operating parameter. A control module comprises a secondary pump transfer module detecting a status of a transfer pump for transferring fuel between a first fuel source and a second fuel source; and a fuel composition estimation module in communication with the secondary pump transfer module, receiving a fuel trim value and a vehicle operating parameter, and calculating a fuel composition of one of the first fuel source and second fuel source based on the fuel trim value, the transfer pump status, and the vehicle operating parameter.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: June 15, 2010
    Inventors: Mark D. Carr, Louis A. Avallone, Julian R. Verdejo, Jeffrey A. Sell, Shuanita Robinson
  • Publication number: 20100107630
    Abstract: An exhaust control system for a vehicle comprises an exhaust system modeling module and an actuator control module. The exhaust system modeling module estimates an input gas temperature, an output gas temperature, a mass temperature, and a pressure for an exhaust system component of an exhaust system implemented in the vehicle. Exhaust gas flows through the exhaust system component. The actuator control module selectively adjusts an engine operating parameter based on at least one of the input gas temperature, the output gas temperature, the mass temperature, and the pressure.
    Type: Application
    Filed: December 9, 2008
    Publication date: May 6, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wajdi B. Hamama, Jaehak Jung, Jon C. Miller, Gregory J. York, David N. Belton, J. Michael Ellenberger, Louis A. Avallone, Wenbo Wang
  • Patent number: 7698048
    Abstract: A control system for an engine of a vehicle includes a requested torque module that determines a first requested torque based on an accelerator pedal position and a current engine torque output capacity. An accelerator effective position module determines an accelerator effective position based on a requested driver axle torque request signal. A power enrichment (PE) module enables a PE mode to provide a richer than stoichiometric fuel equivalence ratio based on the first requested torque and the accelerator effective position.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 13, 2010
    Inventors: Jaehak Jung, Louis A. Avallone, Christopher E. Whitney, Leonard G. Wozniak, Klaus Pochner, Jeffrey M. Kaiser
  • Publication number: 20100075802
    Abstract: A cold-start control system for an internal combustion engine includes a heat estimation module, a torque request module and a propulsion torque determination module. The heat estimation module determines an exhaust system temperature and estimates heat required to heat an exhaust system to a predetermined temperature. The torque request module generates a torque request based on the estimated heat. The propulsion torque determination module determines a desired engine torque based on the torque request.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher A. Gillanders, John L. Lahti, Louis A. Avallone, Jon C. Miller, Robert C. Simon, JR., Todd R. Shupe, Jaehak Jung, William R. Cawthorne, Leonard G. Wozniak
  • Patent number: 7673621
    Abstract: A system for estimating fuel concentration comprises an ethanol estimating module that generates an ethanol estimate based on baseline closed loop corrections (CLC). A fuel system module controls fuel to an engine and generates a fuel system error. The ethanol estimating module selectively adjusts the baseline CLC and the ethanol estimate based on the fuel system error. A method for estimating fuel concentration comprises generating an ethanol estimate based on baseline closed loop corrections (CLC); controlling fuel to an engine and generating a fuel system error; and selectively adjusting said baseline CLC and said ethanol estimate based on said fuel system error.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: March 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Mark D. Carr, Louis A. Avallone, Ian J. MacEwen, Wajdi B. Hamama, Julian R. Verdejo