Patents by Inventor Louis A. Campbell

Louis A. Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200352706
    Abstract: A spacer for creating a docking station for a transcatheter heart valve is provided. The spacer changes an effective diameter and/or a shape of an implanted bioprosthetic structure such as a bioprosthetic heart valve or annuloplasty ring, providing a supporting structure into which the transcatheter valve expands without over expanding. The spacer may be deployed through an interventional technique either through transseptal access, transfemoral access, or transapical access and is typically deployed at least in part on an inflow portion of the implanted bioprosthetic structure.
    Type: Application
    Filed: June 22, 2020
    Publication date: November 12, 2020
    Inventor: Louis A. Campbell
  • Patent number: 10799346
    Abstract: A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available to valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment. A catheter-based system and method for deployment is provided.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 13, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Rafael Pintor, Mark Chau, Travis Zenyo Oba, August R. Yambao, Louis A. Campbell, Tammy Huntley, Qinggang Zeng, Carey L. Cristea, Faisal Kalam
  • Publication number: 20200315795
    Abstract: Packaging for prosthetic heart valves including an assembly for securely retaining a heart valve within ajar and facilitating retrieval therefrom. The assembly includes a packaging sleeve that fits closely within the jar and has a clip structure for securing a valve holder. Contrary to previous designs, in one embodiment the valve holder is directed downward into the jar, and the valve is retained with an inflow end upward. The valve may have flexible leaflets, and a leaflet parting member on the end of the shaft extends through the leaflets and couples with the valve holder. The assembly of the packaging sleeve, valve, and holder can then be removed from the jar and a valve delivery tube connected with the holder, or to the leaflet parting member. The packaging sleeve may be bifurcated into two halves connected at a living hinge to facilitate removal from around the valve/holder subassembly.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Frederic B. Hodshon, Rafael Pintor, August R. Yambao, Abhishek Gautam, Louis A. Campbell, Lawrence J. Farhat, Tammy Huntley, Faisal Kalam, Travis Zenyo Oba, Qinggang Zeng
  • Publication number: 20200253601
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without using knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donakj E. Bobo, JR.
  • Publication number: 20200214838
    Abstract: An improved holder and storage system for prosthetic heart valves that pre-shields or pre-constricts the commissure posts of the valve to prevent suture looping. Pre-shielding and pre-constriction mean at the time of manufacture, so that the valves are stored with the commissure posts shielded and/or constricted. The holders may have solid legs that directly contact and constrict and hold the commissure posts without the use of sutures in tension that might creep over the time in storage. The holder may have a base in contact with the inflow end and a shaft portion that projects through the valve leaflets and cooperates with movable legs on the outflow end of the valve in contact with the commissure posts. The holders may, alternatively, have flexible leg members that extend through the valve and have distal end portions configured to extend over and shield the tips of commissure posts.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Louis A. Campbell, Andrew Phung
  • Publication number: 20200163764
    Abstract: Devices and related methods of use are provided for improving heart function. In one embodiment of the present disclosure, a device includes a ring-like structure configured to be secured to a heart valve; at least one elongate member extending from the ring-like structure, wherein an end of the elongate member is configured to be secured to heart geometry other than a heart valve; and an adjustment mechanism for simultaneously altering a dimension of the ring-like structure and a length of the elongate member.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Donald E. Bobo, JR., Assaf Bash, Louis A. Campbell, Alison S. Curtis, Tak G. Cheung, John F. Migliazza
  • Publication number: 20200155309
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, JR., Myron Howanec, JR., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Publication number: 20200138573
    Abstract: Artificial heart valves, their manufacture, and methods of use are described. Generally, artificial heart valves can be deployed to replace or supplement defective heart valves in a patient. These artificial heart valves can comprise a frame with an inner skirt and leaflets. These inner skirt and leaflets can be generated from regenerative tissue to allow integration of the tissue with the body of a patient, while the frame can be generated from bioabsorb able material to allow dissolution of the frame over time. This combination of materials may allow for the artificial valve to grow with a patient and avoid costly and potentially dangerous replacement for patients receiving artificial valves.
    Type: Application
    Filed: October 28, 2019
    Publication date: May 7, 2020
    Inventors: Hao Shang, Louis A. Campbell
  • Patent number: 10631854
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without using knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: April 28, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, Jr.
  • Publication number: 20200093593
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 26, 2020
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, JR., Myron Howanec, David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 10588743
    Abstract: An improved holder and storage system for prosthetic heart valves that pre-shields or pre-constricts the commissure posts of the valve to prevent suture looping. Pre-shielding and pre-constriction mean at the time of manufacture, so that the valves are stored with the commissure posts shielded and/or constricted. The holders may have solid legs that directly contact and constrict and hold the commissure posts without the use of sutures in tension that might creep over the time in storage. The holder may have a base in contact with the inflow end and a shaft portion that projects through the valve leaflets and cooperates with movable legs on the outflow end of the valve in contact with the commissure posts. The holders may, alternatively, have flexible leg members that extend through the valve and have distal end portions configured to extend over and shield the tips of commissure posts.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: March 17, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Louis A. Campbell, Andrew Phung
  • Publication number: 20200069426
    Abstract: Systems, apparatuses, and methods disclosed herein are provided for medical treatment, including transcatheter medical treatments and/or for treatment of dilated hearts (e.g., dilated left ventricle) or functional mitral valve regurgitation within a human heart. The systems, apparatuses, and methods disclosed herein may include applying one or more heart splints to the patient's heart to apply pressure to the heart to reshape the heart. Anchors disclosed herein may be utilized in plugs for treating openings in a septum between two chambers of a heart, e.g., ventricular septal defects (VSD), atrial septal defects (ASD), and patent foramen ovale (PFO). In addition, the anchors disclosed herein may be utilized to reshape an annulus of a patient's heart valve, including a tricuspid valve of a patient's heart. The anchors disclosed herein may also be utilized to reposition a heart valve leaflet to reduce heart valve leaflet prolapse.
    Type: Application
    Filed: August 23, 2019
    Publication date: March 5, 2020
    Inventors: Brian S. Conklin, Maria L. Saravia, Adam J. Yestrepsky, Derrick Johnson, Rodolfo Rodriguez, Sai Prasad Uppalapati, Louis A. Campbell
  • Publication number: 20200060816
    Abstract: A valved conduit including a bioprosthetic valve, such as a heart valve, and a tubular conduit sealed with a bioresorbable material. The bioprosthetic heart valve includes prosthetic tissue that has been treated such that the tissue may be stored dry for extended periods without degradation of functionality of the valve. The bioprosthetic heart valve may have separate bovine pericardial leaflets or a whole porcine valve. The sealed conduit includes a tubular matrix impregnated with a bioresorbable medium such as gelatin or collagen. The valved conduit is stored dry in packaging in which a desiccant pouch is supplied having a capacity for absorbing moisture within the packaging limited to avoid drying the bioprosthetic tissue out beyond a point where its ability to function in the bioprosthetic heart valve is compromised. The heart valve may be sewn within the sealed conduit or coupled thereto with a snap-fit connection.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Louis A. Campbell, Donald E. Bobo, JR., Gregory A. Wright, Tak G. Cheung
  • Patent number: 10555810
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 11, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Rafael Pintor, Mark Chau, Travis Zenyo Oba, August R. Yambao, Louis A. Campbell, Tammy Huntley, Qinggang Zeng, Carey L. Cristea, Faisal Kalam
  • Patent number: 10548730
    Abstract: Devices and related methods of use are provided for improving heart function. In one embodiment of the present disclosure, a device includes a ring-like structure configured to be secured to a heart valve; at least one elongate member extending from the ring-like structure, wherein an end of the elongate member is configured to be secured to heart geometry other than a heart valve; and an adjustment mechanism for simultaneously altering a dimension of the ring-like structure and a length of the elongate member.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: February 4, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Donald E. Bobo, Jr., Assaf Bash, Louis A. Campbell, Alison S. Curtis, Tak G. Cheung, John F. Migliazza
  • Patent number: 10543085
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 28, 2020
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, Jr., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Publication number: 20200000586
    Abstract: Systems, devices, kits, and methods are described for securing a bioprosthetic heart valve within an anatomical feature of a patient. Kits can comprise a bioprosthetic heart valve, a curable composition, and an applicator configured to deliver the curable composition to a target area. The bioprosthetic heart valve can comprise a support structure and one or more valve leaflets coupled thereto. The support structure can comprise a sewing portion peripheral of the bioprosthetic heart valve. The support structure and the valve leaflets can define a central flow orifice. The curable composition can comprise a pre-polymer composition and an initiator. Methods can comprise positioning the bioprosthetic heart valve within the anatomical feature of a patient, applying the curable composition to one or both of the bioprosthetic heart valve and the anatomical feature, and curing the curable composition for a cure time. The applying can be performed before or after the positioning.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Bin Tian, Rodolfo Rodriguez, Louis A. Campbell, Steven M. Claessens, Carolyn Sue Martinez
  • Publication number: 20190380835
    Abstract: A method for repairing a native valve of a patient during a non-open-heart procedure includes attaching two or more attachment members to the native valve. The method also includes applying a force to the two or more attachment members such that the two or more attachment members cause a cinching effect on at least a portion of the native valve. The method further includes securing the two or more attachment members with one or more anchor members such that the two or more attachment members maintain the cinching effect.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 19, 2019
    Inventors: Sven Benjamin Iversen, Adam J. Yestrepsky, Amy E. Munnelly, Bin Tian, Danny Barrientos Baldo, JR., Brian S. Conklin, Louis A. Campbell, John Richard Carpenter
  • Patent number: 10485661
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 26, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace Myong Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, Jr., David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas H. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 10456250
    Abstract: A valved conduit including a bioprosthetic valve, such as a heart valve, and a tubular conduit sealed with a bioresorbable material. The bioprosthetic heart valve includes prosthetic tissue that has been treated such that the tissue may be stored dry for extended periods without degradation of functionality of the valve. The bioprosthetic heart valve may have separate bovine pericardial leaflets or a whole porcine valve. The sealed conduit includes a tubular matrix impregnated with a bioresorbable medium such as gelatin or collagen. The valved conduit is stored dry in packaging in which a desiccant pouch is supplied having a capacity for absorbing moisture within the packaging limited to avoid drying the bioprosthetic tissue out beyond a point where its ability to function in the bioprosthetic heart valve is compromised. The heart valve may be sewn within the sealed conduit or coupled thereto with a snap-fit connection.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: October 29, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Louis A. Campbell, Donald E. Bobo, Jr., Gregory A. Wright, Tak G. Cheung