Patents by Inventor Louis B. Rosenberg

Louis B. Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040233167
    Abstract: A low-cost haptic feedback device that provides spatially-based sensations such as textures in correlation with a displayed graphical environment. The device includes a housing, a sensor device, and an actuator for applying a force to the user. A local processor reports relative sensor data to the host processor and receives force information from the host processor. The host force information causes a texture sensation to be output by the actuator, the texture sensation providing forces to the user at least approximately spatially correlated with predefined locations in the graphical environment as determined by a local processor. In some embodiments, the local processor can model a position of the cursor while the cursor interacts with the texture field, where the modeled position is used for determining the force output to the user, and the force information from the host can include a gating command to activate or deactivate the texture sensation when the cursor enters or exits the texture field.
    Type: Application
    Filed: April 12, 2002
    Publication date: November 25, 2004
    Applicant: Immersion Corporation
    Inventors: Adam C. Braun, Louis B. Rosenberg, Kenneth M. Martin
  • Patent number: 6822635
    Abstract: A haptic feedback touch control used to provide input to a computer. A touch input device includes a planar touch surface that provides position information to a computer based on a location of user contact. The computer can position a cursor in a displayed graphical environment based at least in part on the position information, or perform a different function. At least one actuator is also coupled to the touch input device and outputs a force to provide a haptic sensation to the user. The actuator can move the touchpad laterally, or a separate surface member can be actuated. A flat E-core actuator, piezoelectric actuator, or other types of actuators can be used to provide forces. The touch input device can include multiple different regions to control different computer functions.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: November 23, 2004
    Assignee: Immersion Corporation
    Inventors: Erik J. Shahoian, Bruce M. Schena, Louis B. Rosenberg
  • Publication number: 20040227727
    Abstract: A force feedback interface device is coupled to a host computer that displays a graphical environment, the device including a user manipulatable object physically contacted and moveable by a user. A sensor detects a position of the user object and provides a sensor signal to the host computer, where the sensor signal includes information representative of the position of the user object. An actuator is coupled to the device or user object and outputs a force on the user manipulatable object or a housing of the device. The actuator includes a magnet and a grounded coil, where the magnet moves approximately within a plane with respect to the coil, and wherein a current is provided in the coil to generate the force. Other embodiments provide a magnet that moves in a linear degree of freedom within a coil housing, or provide an at least partially spherical magnet providing rotary degrees of freedom to a user manipulatable object coupled to the magnet. One embodiment includes a planar frame support mechanism.
    Type: Application
    Filed: March 8, 2004
    Publication date: November 18, 2004
    Inventors: Bruce M. Schena, Louis B. Rosenberg
  • Patent number: 6816148
    Abstract: An interface device and method for providing enhanced cursor control with force feedback. A force feedback interface device includes a manipulandum, such as a mouse, that is moveable in a local workspace. The device is coupled to a host computer that displays a cursor in a graphical environment, such as a GUI, on a display screen. An interior region and a border region in the local workspace is defined. One mapping of device movement to cursor movement is used for the interior region, and a different mapping is used for the border region. Mapping methods include ballistics, absolute, linear, rate control, and variable absolute. Rate control embodiments can be single axis or dual axis. In one embodiment, when the mouse moves from the interior region to the border region, the mapping providing the greater cursor velocity is used to better conserve device workspace in the direction of travel and to decrease any sense of mapping mode change to the user.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: November 9, 2004
    Assignee: Immersion Corporation
    Inventors: Jeffrey R. Mallett, Dean C. Chang, Louis B. Rosenberg, Adam C. Braun, Kenneth M. Martin, Jonathan L. Beamer
  • Publication number: 20040183782
    Abstract: Low-cost haptic interface device implementations for interfacing a user with a host computer. A haptic feedback device, such as a mouse or other device, includes a housing physically contacted by a user, and an actuator for providing motion that causes haptic sensations on the device housing and/or on a movable portion of the housing. The device may include a sensor for detecting x-y planar motion of the housing. Embodiments include actuators with eccentric rotating masses, buttons having motion influenced by various actuator forces, and housing portions moved by actuators to generate haptic sensations to a user contacting the driven surfaces.
    Type: Application
    Filed: April 5, 2004
    Publication date: September 23, 2004
    Inventors: Eric J. Shahoian, Louis B. Rosenberg
  • Publication number: 20040183777
    Abstract: A mechanical interface for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism includes multiple members that are pivotably coupled to each other to provide two revolute degrees of freedom to a user manipulatable about a pivot point located remotely from the members at about an intersection of the axes of rotation of the members. A linear axis member, coupled to the user object, is coupled to at least one of the members, extends through the remote pivot point and is movable in the two rotary degrees of freedom and a third linear degree of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a computer. Capstan band drive mechanisms transmit forces between the transducers and the object and include a capstan and flat bands, where the flat bands transmit motion and force between the capstan and interface members.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 23, 2004
    Inventors: JoeBen Bevirt, David F. Moore, John Q. Norwood, Louis B. Rosenberg, Mike D. Levin
  • Publication number: 20040174340
    Abstract: A low-cost haptic feedback trackball device for providing haptic feedback to a user for enhancing interactions in a graphical environment provided by a computer. The trackball device includes a sensor device that detects the movement of a sphere in two rotary degrees of freedom. An actuator applies a force preferably along a z-axis perpendicular to the plane of the surface supporting the device, where the force is transmitted through the housing to the user. The output force is correlated with interaction of a controlled graphical object, such as a cursor, with other graphical objects in the displayed graphical environment. Preferably, at least one compliant element is provided between a portion of the housing contacted by the user and the support surface, where the compliant element amplifies the force output from the actuator by allowing the contacted portion of the housing to move with respect to the support surface.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 9, 2004
    Inventors: Ryan D. Bruneau, Ramon Alarcon, Louis B. Rosenberg, Erik J. Shahoian
  • Publication number: 20040164971
    Abstract: Embodiments of the invention relate to haptic devices for use with a variety of computer/video interface devices. Such haptic devices can work in conjunction with and thereby provide “haptic augmentations” to otherwise conventional user-interface devices, including a variety of computer mice known in the art, irrespective of their types and manufactures. Such haptic devices can also be used to convey information to a user by way of haptic sensations.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: Vincent Hayward, Ramon Alarcon, Louis B. Rosenberg
  • Publication number: 20040164959
    Abstract: A method and apparatus for interfacing the motion of a user-manipulable object with an electrical or computer system includes a user object physically contacted by a user. A gimbal mechanism is coupled to the user object, such as a joystick or a medical tool, and provides at least two degrees of freedom to the user object. The gimbal mechanism preferably includes multiple members, at least two of which are formed as a unitary member which provides flex between the selected members. An actuator applies a force along a degree of freedom to the user object in response to electrical signals produced by the computer system. A sensor detects a position of the user object along the degree of freedom and outputs sensor signals to the computer system.
    Type: Application
    Filed: February 19, 2004
    Publication date: August 26, 2004
    Inventors: Louis B. Rosenberg, Bruce M. Schena
  • Publication number: 20040160415
    Abstract: A design interface tool for designing force sensations for use with a host computer and force feedback interface device. A force feedback device is connected to a host computer that displays the interface tool. Input from a user is received in the interface to select a type of force sensation to be commanded by a host computer and output by a force feedback interface device. Input, such as parameters, is then received from the user which designs and defines physical characteristics of the selected force sensation. A graphical representation of the characterized force sensation is displayed on the host computer which provides a visual demonstration of a feel of the characterized force sensation so that the user can view an effect of parameters on said force sensation.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 19, 2004
    Inventors: Louis B. Rosenberg, Dean C. Chang
  • Publication number: 20040162700
    Abstract: A method and apparatus for measuring three-dimensional (3-D) coordinates. A 3-D object can be digitized into a mesh representation manipulable by a computer system by tracing a stylus of a probe apparatus over surfaces of the object. The probe apparatus includes an arm having a series of linkages and joints. The arm can be assembled by placing the joints of the arm in joint fixtures a desired distance and angle apart and bonding the joints to a linkage. The probe apparatus is calibrated by placing the tip of the stylus at an arbitrary point in a work volume and varying the stylus' orientation to find error values and determine calibration parameters. The sensors of the probe apparatus are zeroed by placing the probe apparatus in the only possible home position and assigning assumed starting angles to the sensors. A rotary table can be used to support the object being digitized, where the rotation of the rotary table and object during digitization is sensed and included in coordinate calculations.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 19, 2004
    Inventors: Louis B. Rosenberg, Bruce M. Schena
  • Publication number: 20040145563
    Abstract: A method and apparatus for providing force sensations in virtual environments includes a human/computer interface device and method used in conjunction with a host computer and which can provide feel sensations to a user of the device. A user manipulatable object physically contacted by a user, such as a joystick, stylus, pool cue, or other object, is movable in multiple degrees of freedom using a gimbal mechanism. A local microprocessor, separate from the host computer, enables communication with the host computer and receives commands from the host, decodes the commands, outputs actuator signals in accordance with commands, receives sensor signals, and reports data to the host in response to commands. Actuators generate feel sensations by providing a force on the user object in response to actuator signals from the local microprocessor, and sensors detect the motion of the user object and reports sensor signals to the local microprocessor.
    Type: Application
    Filed: June 25, 2002
    Publication date: July 29, 2004
    Inventors: Louis B. Rosenberg, Bernard G. Jackson
  • Publication number: 20040130526
    Abstract: A low-cost haptic feedback keyboard device for providing haptic feedback to a user for enhancing interactions in a displayed environment provided by a computer. The haptic keyboard device can be a keyboard having multiple keys, or can be a wrist rest or other attachment coupled to a keyboard. The device includes a housing that is physically contacted by the user and rests on a support surface. An actuator is coupled to the housing and applies a force to the housing approximately along an axis that is substantially perpendicular to the support surface, where the force is transmitted to the user contacting the housing. In one embodiment, the force is an inertial force that is output by moving an inertial mass. The keyboard device can be used in conjunction with another haptic device, such as a mouse, trackball, or joystick.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 8, 2004
    Inventor: Louis B. Rosenberg
  • Publication number: 20040113932
    Abstract: A method and apparatus for shaping force signals for a force feedback device. A source wave is provided and is defined by a set of control parameters (including a steady state magnitude, a frequency value and a duration value) and modified by a set of impulse parameters (including an impulse magnitude, and a settle time representing a time required for the impulse magnitude to change to the steady-state magnitude). Optionally, application parameters specifying a direction of force signal and trigger parameters specifying activating buttons can also be provided for the source wave. Using a host processor or a local processor, the force signal is formed from the source wave and the sets of control parameters and impulse parameters, where the force signal includes an impulse signal followed by a continual steady-state signal after an expiration of the settle time.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 17, 2004
    Inventors: Louis B. Rosenberg, Adam C. Braun
  • Patent number: 6750877
    Abstract: Method and apparatus for controlling haptic feedback to enhance navigation of a cursor or other controlled displayed object in a graphical environment. An interface device is capable of communicating with a computer running an application program and generating a graphical environment includes an actuator for outputting a haptic effect to a user of the interface device. A modulator modulates the magnitude of the haptic effect in relation to, in various embodiments, a velocity of the cursor or user manipulatable object; a rate of interaction of the cursor with graphical objects; or an amount of time that the cursor engages the graphical object.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: June 15, 2004
    Assignee: Immersion Corporation
    Inventors: Louis B. Rosenberg, Matthew Mather, Danny Grant, Christophe Ramstein
  • Publication number: 20040108992
    Abstract: A force feedback interface having isotonic and isometric control capability coupled to a host computer that displays a graphical environment such as a GUI. The interface includes a user manipulatable physical object movable in physical space, such as a mouse or puck. A sensor detects the object's movement and an actuator applies output force on the physical object. A mode selector selects isotonic and isometric control modes of the interface from an input device such as a physical button or from an interaction between graphical objects. Isotonic mode provides input to the host computer based on a position of the physical object and updates a position of a cursor, and force sensations can be applied to the physical object based on movement of the cursor. Isometric mode provides input to the host computer based on an input force applied by the user to the physical object, where the input force is determined from a sensed deviation of the physical object in space.
    Type: Application
    Filed: October 20, 2003
    Publication date: June 10, 2004
    Inventor: Louis B. Rosenberg
  • Publication number: 20040100440
    Abstract: The present invention provides a control knob on a device that allows a user to control functions of the device. In one embodiment, the knob is rotatable in a rotary degree of freedom and moveable in at least one transverse direction approximately perpendicular to the axis. An actuator is coupled to the knob to output a force in the rotary degree of freedom about the axis, thus providing force feedback. In a different embodiment, the knob is provided with force feedback in a rotary degree of freedom about an axis and is also moveable in a linear degree of freedom approximately parallel to the axis, allowing the knob to be pushed and/or pulled by the user. The device controlled by the knob can be a variety of types of devices, such as an audio device, video device, etc. The device can also include a display providing an image updated in response to manipulation of the knob.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 27, 2004
    Inventors: Michael D. Levin, Kenneth M. Martin, Bruce M. Schena, Adam C. Braun, Louis B. Rosenberg
  • Publication number: 20040075676
    Abstract: A haptic feedback planar touch control used to provide input to a computer. A touch input device includes a planar touch surface that inputs a position signal to a processor of the computer based on a location of user contact on the touch surface. The computer can position a cursor in a displayed graphical environment based at least in part on the position signal, or perform a different function. At least one actuator is also coupled to the touch input device and outputs a force to provide a haptic sensation to the user contacting the touch surface. The touch input device can be a touchpad separate from the computer's display screen, or can be a touch screen. Output haptic sensations on the touch input device can include pulses, vibrations, and spatial textures. The touch input device can include multiple different regions to control different computer functions.
    Type: Application
    Filed: July 10, 2003
    Publication date: April 22, 2004
    Inventors: Louis B. Rosenberg, James R. Riegel
  • Publication number: 20040066369
    Abstract: An apparatus for interfacing the movement of a shaft with a computer includes a support, a gimbal mechanism having two degrees of freedom, and three electromechanical transducers. When a shaft is engaged with the gimbal mechanism, it can move with three degrees of freedom in a spherical coordinate space, where each degree of freedom is sensed by one of the three transducers. A fourth transducer can be used to sense rotation of the shaft around an axis.
    Type: Application
    Filed: October 1, 2003
    Publication date: April 8, 2004
    Inventor: Louis B. Rosenberg
  • Patent number: 6717573
    Abstract: Low-cost haptic interface device implementations for interfacing a user with a host computer. A haptic feedback device, such as a mouse or other device, includes a housing physically contacted by a user, and an actuator for providing motion that causes haptic sensations on the device housing and/or on a movable portion of the housing. The device may include a sensor for detecting x-y planar motion of the housing. Embodiments include actuators with eccentric rotating masses, buttons having motion influenced by various actuator forces, and housing portions moved by actuators to generate haptic sensations to a user contacting the driven surfaces.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: April 6, 2004
    Assignee: Immersion Corporation
    Inventors: Erik J. Shahoian, Louis B. Rosenberg