Patents by Inventor Louis Chiappetta

Louis Chiappetta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10928101
    Abstract: An ejector (200; 300; 400) has a primary inlet (40), a secondary inlet (42), and an outlet (44). A primary flowpath extends from the primary inlet to the outlet. A secondary flowpath extends from the secondary inlet to the outlet. A mixer convergent section (114) is downstream of the secondary inlet. A motive nozzle (100) surrounds the primary flowpath upstream of a junction with the secondary flowpath to pass a motive flow. The motive nozzle has an exit (110). The ejector has surfaces (258, 260) positioned to introduce swirl to the motive flow.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: February 23, 2021
    Assignee: Carrier Corporation
    Inventors: Louis Chiappetta, Jr., Parmesh Verma, Thomas D. Radcliff
  • Patent number: 10808323
    Abstract: A nozzle assembly for a cold spray deposition system includes a nozzle body with an axial bore. The axial bore defines a converging segment, a diverging segment downstream of the converging segment, and a throat fluidly connected between the converging and diverging segments of the axial bore. A particulate conduit is fixed within the axial bore and extends along the axial bore diverging segment for issuing solid particulate into the diverging segment of the axial bore.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 20, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Aaron T. Nardi, Michael A. Klecka, Louis Chiappetta, Martin Haas
  • Publication number: 20190010612
    Abstract: A nozzle assembly for a cold spray deposition system includes a nozzle body with an axial bore. The axial bore defines a converging segment, a diverging segment downstream of the converging segment, and a throat fluidly connected between the converging and diverging segments of the axial bore. A particulate conduit is fixed within the axial bore and extends along the axial bore diverging segment for issuing solid particulate into the diverging segment of the axial bore.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Aaron T. Nardi, Michael A. Klecka, Louis Chiappetta, Martin Haas
  • Patent number: 10100412
    Abstract: A nozzle assembly for a cold spray deposition system includes a nozzle body with an axial bore. The axial bore defines a converging segment, a diverging segment downstream of the converging segment, and a throat fluidly connected between the converging and diverging segments of the axial bore. A particulate conduit is fixed within the axial bore and extends along the axial bore diverging segment for issuing solid particulate into the diverging segment of the axial bore.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: October 16, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Aaron T. Nardi, Michael A. Klecka, Louis Chiappetta, Martin Haas
  • Publication number: 20160130703
    Abstract: A nozzle assembly for a cold spray deposition system includes a nozzle body with an axial bore. The axial bore defines a converging segment, a diverging segment downstream of the converging segment, and a throat fluidly connected between the converging and diverging segments of the axial bore. A particulate conduit is fixed within the axial bore and extends along the axial bore diverging segment for issuing solid particulate into the diverging segment of the axial bore.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 12, 2016
    Inventors: Aaron T. Nardi, Michael A. Klecka, Louis Chiappetta, Martin Haas
  • Patent number: 9303709
    Abstract: A shock damper is disclosed. The shock damper may have a variable shear control apparatus through which a shear-thickening fluid may flow. In this manner, the shock damper may compress at different rates for different applied impulse forces, in response to the changing viscosity of the shear-thickening fluid.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: April 5, 2016
    Assignee: GGODRICH CORPORATION
    Inventors: Enrico Manes, Connie E. Bird, Louis Chiappetta, Jr.
  • Publication number: 20160040740
    Abstract: A shock damper is disclosed. The shock damper may have a variable shear control apparatus through which a shear-thickening fluid may flow. In this manner, the shock damper may compress at different rates for different applied impulse forces, in response to the changing viscosity of the shear-thickening fluid.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 11, 2016
    Inventors: Enrico Manes, Connie E. Bird, Louis Chiappetta, JR.
  • Publication number: 20150357665
    Abstract: A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system in a manner that increases the overall efficiency and decreases the overall weight of system. The system and method include a secondary blower for boosting air stream pressure level sufficient for operation of a reformer that is designed to minimize pressure drop; an integrated heat exchanger for recovering heat from exhaust and comprising multiple flow fields for ensuring inlet temperature requirements of a solid oxide fuel cell are met; and a thermal enclosure for separating hot zone components from cool zone components for increasing thermal efficiency of the system and better thermal management.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 10, 2015
    Inventors: Robert J. Braun, Sean C. Emerson, Justin R. Hawkes, Ellen Y. Sun, Jean Yamanis, Tobias H. Sienel, Balbir Singh Bal, Stuart Anthony Astley, Thomas D. Radcliffe, James T. Beals, Walter H. Borst, JR., May L. Corn, Louis Chiappetta, JR., John T. Costello, Robert R. Hebert, Thomas Henry Vanderspurt
  • Patent number: 9147894
    Abstract: A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: September 29, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Robert J. Braun, Sean C. Emerson, Justin R. Hawkes, Ellen Y. Sun, Jean Yamanis, Tobias H. Sienel, Balbir Singh Bal, Stuart Anthony Astley, Thomas D. Radcliffe, James T. Beals, Walter H. Borst, Jr., May L. Corn, Louis Chiappetta, Jr., John T. Costello, Robert R. Hebert, Thomas Henry Vanderspurt
  • Patent number: 9065088
    Abstract: A fuel cell device includes a plurality of channels that have at least one unrestricted inlet, a conduit for directing a flow having a distribution pattern to the unrestricted inlet, and a gap region between the conduit and the plurality of channels for receiving the flow distribution pattern, the gap region having such dimensions in which the distribution pattern tends to normalize within the gap region so that flow to each of the unrestricted inlets tends to normalize across said gap region.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 23, 2015
    Assignees: Audi AG, Toyota Jidosha Kabushiki Kaisha
    Inventors: Arun Pandy, Louis Chiappetta, Jr., Robert Mason Darling, Mallika Gummalla
  • Publication number: 20140083121
    Abstract: An ejector (200; 300; 400) has a primary inlet (40), a secondary inlet (42), and an outlet (44). A primary flowpath extends from the primary inlet to the outlet. A secondary flowpath extends from the secondary inlet to the outlet. A mixer convergent section (114) is downstream of the secondary inlet. A motive nozzle (100) surrounds the primary flowpath upstream of a junction with the secondary flowpath to pass a motive flow. The motive nozzle has an exit (110). The ejector has surfaces (258, 260) positioned to introduce swirl to the motive flow.
    Type: Application
    Filed: April 10, 2012
    Publication date: March 27, 2014
    Applicant: CARRIER CORPORATION
    Inventors: Louis Chiappetta, JR., Parmesh Verma, Thomas D. Radcliff
  • Patent number: 8668489
    Abstract: An ignition system for a multi-burner heat exchanger assembly, a furnace, and a method using same are disclosed. The assembly may include a plurality of adjacent heat exchanger tubes, with a burner associated with each tube. All the burners may be lit with a single igniter and no source of secondary air. To do so, each of the burners may be provided so as to generate a swirling exit flow of combustion gases. One or more carryover tubes may also be connected between adjacent pairs of heat exchanger tubes or adjacent pairs of burners. The swirling flow generated by the burners causes hot combustion gases to move through the carryover tubes to thus carry the flame from one burner to the next. Not only can a single igniter be used, but a single flame sensor as well, while at the same time reducing nitrogen oxide emissions.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 11, 2014
    Assignee: Carrier Corporation
    Inventors: Louis Chiappetta, Scott A. Liljenberg, Meredith B. Colket, Shiling Zhang
  • Publication number: 20130302716
    Abstract: An example interconnector of a fuel cell repeater unit includes a dimpled interconnector of a fuel cell repeater unit. The dimpled interconnector establishes at least a portion of an interconnector flow path operative to communicate airflow through the fuel cell repeater unit, the dimpled interconnector having a plurality of dimples.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Jean Yamanis, Justin R. Hawkes, Louis Chiappetta, JR., Connie E. Bird, Ellen Y. Sun, JR., Paul F. Croteau
  • Publication number: 20130011770
    Abstract: A fuel cell (10) device includes a plurality of channels (32, 34) that have at least one unrestricted inlet (33), a conduit for directing a flow having a distribution pattern (84) to the unrestricted inlet (33) and an opening (40) between the conduit (50) and the opening (40) for receiving the flow distribution pattern (84), the opening having such dimension (L, W) in which the distribution pattern tends to normalize within the opening so that flow to each of the unrestricted inlet (33) tends to normalize across said opening.
    Type: Application
    Filed: May 11, 2010
    Publication date: January 10, 2013
    Inventors: Arun Pandy, Louis Chiappetta, JR., Robert Mason Darling, Mallika Gummalla
  • Patent number: 8127829
    Abstract: A heat exchanger includes one or more passages and one or more metal foam sections adjacent the passage to promote an exchange of heat relative to the passage. The metal foam section includes a nominal thermal conductivity gradient there though to provide a desirable balance of heat exchange properties within the metal foam section.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: March 6, 2012
    Assignee: United Technologies Corporation
    Inventors: Daniel R. Sabatino, Scott F. Kaslusky, Hayden M. Reeve, Louis J. Spadaccini, Louis Chiappetta, He Huang, David R. Sobel
  • Publication number: 20120052452
    Abstract: An ignition system for a multi-burner heat exchanger assembly, a furnace, and a method using same are disclosed. The assembly may include a plurality of adjacent heat exchanger tubes, with a burner associated with each tube. All the burners may be lit with a single igniter and no source of secondary air. To do so, each of the burners may be provided so as to generate a swirling exit flow of combustion gases. One or more carryover tubes may also be connected between adjacent pairs of heat exchanger tubes or adjacent pairs of burners. The swirling flow generated by the burners causes hot combustion gases to move through the carryover tubes to thus carry the flame from one burner to the next. Not only can a single igniter be used, but a single flame sensor as well, while at the same time reducing nitrogen oxide emissions.
    Type: Application
    Filed: August 2, 2011
    Publication date: March 1, 2012
    Applicant: Carrier Corporation
    Inventors: Louis Chiappetta, Scott A. Liljenberg, Meredith B. Colket, Shiling Zhang
  • Publication number: 20120045701
    Abstract: A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.
    Type: Application
    Filed: January 9, 2009
    Publication date: February 23, 2012
    Applicant: UTC POWER CORPORATION
    Inventors: Robert J. Braun, Sean C. Emerson, Justin R. Hawkes, Ellen Y. Sun, Jean Yamanis, Tobias H. Sienel, Balbir Singh Bal, Stuart Anthony Astley, Thomas D. Radcliffe, James T. Beals, Walter H. Borst, JR., May L. Corn, Louis Chiappetta, JR., John T. Costello, Robert R. Hebert, Thomas Henry Vanderspurt
  • Patent number: 7824470
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a multitude of flow impingement elements which are interleaved to provide a fuel channel with intricate two-dimensional flow characteristics. The flow impingement elements break up the boundary layers and enhance the transport of oxygen from the core of the of the fuel flow within the fuel channel to the oxygen permeable membrane surfaces by directing the fuel flow in a direction normal to the oxygen permeable membrane. The rapid mixing of the relatively rich oxygen core of the fuel with the relatively oxygen-poor flow near the oxygen permeable membrane enhances the overall removal rate of oxygen from the fuel. Because this process can be accomplished in fuel channels of relatively larger flow areas while maintaining laminar flow, the pressure drop sustained is relatively low.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: United Technologies Corporation
    Inventors: Louis Chiappetta, Louis J. Spadaccini, He Huang, Mallika Gummalla, Dochul Choi
  • Publication number: 20100248065
    Abstract: An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
    Type: Application
    Filed: October 22, 2008
    Publication date: September 30, 2010
    Inventors: Jean Yamanis, Justin Hawkes, Louis Chiappetta, JR., Connie E. Bird, Ellen Y. Sun, Paul F. Croteau
  • Publication number: 20100218921
    Abstract: A heat exchanger includes one or more passages and one or more metal foam sections adjacent the passage to promote an exchange of heat relative to the passage. The metal foam section includes a nominal thermal conductivity gradient there though to provide a desirable balance of heat exchange properties within the metal foam section.
    Type: Application
    Filed: September 6, 2006
    Publication date: September 2, 2010
    Inventors: Daniel R. Sabatino, Scott F. Kaslusky, Hayden M. Reeve, Louis J. Spadaccini, Louis Chiappetta, He Huang, David R. Sobel