Patents by Inventor Louis D. Lanzerotti

Louis D. Lanzerotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8030167
    Abstract: Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Louis D. Lanzerotti, Bradley A. Orner, Jay S. Rascoe, David C. Sheridan, Stephen A. St. Onge
  • Patent number: 8022496
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: September 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 7956412
    Abstract: A dielectric material layer is formed on a bottom surface and sidewalls of a trench in a semiconductor substrate. The silicon oxide layer forms a drift region dielectric on which a field plate is formed. Shallow trench isolation may be formed prior to formation of the drift region dielectric, or may be formed utilizing the same processing steps as the formation of the drift region dielectric. A gate dielectric layer is formed on exposed semiconductor surfaces and a gate conductor layer is formed on the gate dielectric layer and the drift region dielectric. The field plate may be electrically tied to the gate electrode, may be an independent electrode having an external bias, or may be a floating electrode. The field plate biases the drift region to enhance performance and extend allowable operating voltage of a lateral diffusion field effect transistor during operation.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Jeffrey P. Gambino, Louis D. Lanzerotti, Benjamin T. Voegeli, Steven H. Voldman, Michael J. Zierak
  • Patent number: 7713829
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7550787
    Abstract: Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: June 23, 2009
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Louis D. Lanzerotti, Bradley A. Orner, Jay S. Rascoe, David C. Sheridan, Stephen A. St. Onge
  • Publication number: 20090140343
    Abstract: A dielectric material layer is formed on a bottom surface and sidewalls of a trench in a semiconductor substrate. The silicon oxide layer forms a drift region dielectric on which a field plate is formed. Shallow trench isolation may be formed prior to formation of the drift region dielectric, or may be formed utilizing the same processing steps as the formation of the drift region dielectric. A gate dielectric layer is formed on exposed semiconductor surfaces and a gate conductor layer is formed on the gate dielectric layer and the drift region dielectric. The field plate may be electrically tied to the gate electrode, may be an independent electrode having an external bias, or may be a floating electrode. The field plate biases the drift region to enhance performance and extend allowable operating voltage of a lateral diffusion field effect transistor during operation.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 4, 2009
    Applicant: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Jeffrey P. Gambino, Louis D. Lanzerotti, Benjamin T. Voegeli, Steven H. Voldman, Michael J. Zierak
  • Publication number: 20090057815
    Abstract: Methods of manufacturing a semiconductor structure are disclosed including a deep trench isolation in which a channel stop is formed in the form of an embedded impurity region in the substrate prior to the deep trench etch and formation of transistor devices (FEOL processing) on the substrate. In this fashion, the FEOL processing thermal cycles can activate the impurity region. The deep trench isolations are then formed after FEOL processing. The method achieves the reduced cost of forming deep trench isolations after FEOL processing, and allows the practice of sharing of a collector level between devices to continue. The invention also includes the semiconductor structure so formed.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 5, 2009
    Inventors: Louis D. Lanzerotti, Stephen A. St. Onge
  • Patent number: 7491614
    Abstract: Methods of manufacturing a semiconductor structure are disclosed including a deep trench isolation in which a channel stop is formed in the form of an embedded impurity region in the substrate prior to the deep trench etch and formation of transistor devices (FEOL processing) on the substrate. In this fashion, the FEOL processing thermal cycles can activate the impurity region. The deep trench isolations are then formed after FEOL processing. The method achieves the reduced cost of forming deep trench isolations after FEOL processing, and allows the practice of sharing of a collector level between devices to continue.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Stephen A. St Onge
  • Patent number: 7485965
    Abstract: A through via in an ultra high resistivity wafer and related methods are disclosed. A method for forming a through via comprises: providing a semiconductor wafer including a first silicon layer, a buried dielectric layer, and a substrate; forming a device on the first silicon; and forming a via from a side of the substrate opposite to the buried dielectric layer and through the substrate. Also disclosed is a method for providing a wafer varied resistivity using the through vias and buried dielectric.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Max G. Levy, Yun Shi, Steven H. Voldman
  • Publication number: 20080290524
    Abstract: A through via in an ultra high resistivity wafer and related methods are disclosed. A method for forming a through via comprises: providing a semiconductor wafer including a first silicon layer, a buried dielectric layer, and a substrate; forming a device on the first silicon; and forming a via from a side of the substrate opposite to the buried dielectric layer and through the substrate.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Louis D. Lanzerotti, Max G. Levy, Yun Shi, Steven H. Voldman
  • Publication number: 20080124881
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack Ooh Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7374988
    Abstract: A field effect transistor and method of fabricating the field effect transistor. The field effect transistor, including: a gate electrode formed on a top surface of a gate dielectric layer, the gate dielectric layer on a top surface of a single-crystal silicon channel region, the single-crystal silicon channel region on a top surface of a Ge including layer, the Ge including layer on a top surface of a single-crystal silicon substrate, the Ge including layer between a first dielectric layer and a second dielectric layer on the top surface of the single-crystal silicon substrate.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Louis D. Lanzerotti, Edward J. Nowak
  • Patent number: 7329940
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 12, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Alvin J. Joseph, Seong-dong Kim, Louis D. Lanzerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 7303968
    Abstract: A semiconductor device and a method of fabricating a semiconductor device having multiple subcollectors which are formed in a common wafer, in order to provide multiple structures having different characteristic and frequency response are provided. The subcollectors may be provided using different doses or different material implants resulting in devices having different optimum unity current gain cutoff frequency (fT) and breakdown voltage (BVCEO and BVCBO) on a common wafer.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Louis D. Lanzerotti, Steven H. Voldman
  • Patent number: 7202136
    Abstract: A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5–25% germanium and 0–3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Brian P. Ronan, Steven H. Voldman
  • Patent number: 7173274
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7138669
    Abstract: A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5–25% germanium and 0–3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: November 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Brian P. Ronan, Steven H. Voldman
  • Patent number: 7078722
    Abstract: A field effect transistor and method of fabricating the field effect transistor. The field effect transistor, including: a gate electrode formed on a top surface of a gate dielectric layer, the gate dielectric layer on a top surface of a single-crystal silicon channel region, the single-crystal silicon channel region on a top surface of a Ge including layer, the Ge including layer on a top surface of a single-crystal silicon substrate, the Ge including layer between a first dielectric layer and a second dielectric layer on the top surface of the single-crystal silicon substrate.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: July 18, 2006
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Louis D. Lanzerotti, Edward J. Nowak
  • Patent number: 7064416
    Abstract: A semiconductor device and a method of fabricating a semiconductor device having multiple subcollectors which are formed in a common wafer, in order to provide multiple structures having different characteristic and frequency response are provided. The subcollectors may be provided using different doses or different material implants resulting in devices having different optimum unity current gain cutoff frequency (fT) and breakdown voltage (BVCEO and BVCBO) on a common wafer.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Louis D. Lanzerotti, Steven H. Voldman
  • Patent number: 6900519
    Abstract: The present invention provides a unique device structure and method that provides increased transistor performance in integrated bipolar circuit devices. The preferred embodiment of the present invention provides improved high speed performance by providing reduced base resistence. The preferred design forms the extrinsic base by diffusing dopants from a dopant source layer and into the extrinsic base region. This diffusion of dopants forms at least a portion of the extrinsic base. In particular, the portion adjacent to the intrinsic base region is formed by diffusion. This solution avoids the problems caused by traditional solutions that implanted the extrinsic base. Specifically, by forming at least a portion of the extrinsic base by diffusion, the problem of damage to base region is minimized. This reduced damage enhances dopant diffusion into the intrinsic base. Additionally, the formed extrinsic base can have improved resistence, resulting in an improved maximum frequency for the bipolar device.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: May 31, 2005
    Assignee: International Business Machines Corporation
    Inventors: Marc W. Cantell, James S. Dunn, David L. Harame, Robb A. Johnson, Louis D. Lanzerotti, Stephen A. St. Onge, Brian L. Tessier, Ryan W. Wuthrich