Patents by Inventor Louis J. Finkle

Louis J. Finkle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11616430
    Abstract: A Magnetic Gear Modulator (MGM) of a Concentric Magnetic Gear (CMG) is manufactured by injection molding a modulator cage over angularly spaced apart MGM pole pieces made of a magnetically conducting material. The pole pieces are initially connected by a support ring, or held by a fixture. The modulator cage is preferably a thermally conductive strengthening fiber filled plastic, a carbon fiber plastic, a carbon fiber filled plastic material, a glass material, or a high performance composite plastic molding material. After molding, the outer and/or inner portions of the molding material, and support ring if present, are machined away preferably exposing both inner and outer faces of the pole pieces embedded in the modulator cage. An MGM made using injection molding over a connected support ring and pole pieces reduces cost, and a carbon fiber plastic modulator cage increases strength.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: March 28, 2023
    Inventor: Louis J. Finkle
  • Patent number: 11571935
    Abstract: A tire inflator/bleed system allows tire pressure to be adjusted using controls in a vehicle and while in motion. The inflator system includes a disk portion which rotates with a wheel, and a ring portion rotatably attached to the disk. The disk may be a spacer between the wheel and a vehicle hub, be part of the wheel, or be part of the hub. The ring portion receives air from an air supply/bleeder and is in fluid communication with the disk portion to provide the air to or from the disk portion. The disk portion is in fluid communication with a tire interior to add or remove air from the tire.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: February 7, 2023
    Inventors: Louis J. Finkle, Robert Carale
  • Publication number: 20220278601
    Abstract: A Magnetic Gear Modulator (MGM) of a Concentric Magnetic Gear (CMG) is manufactured by injection molding a modulator cage over angularly spaced apart MGM pole pieces made of a magnetically conducting material. The pole pieces are initially connected by a support ring, or held by a fixture. The modulator cage is preferably a thermally conductive strengthening fiber filled plastic, a carbon fiber plastic, a carbon fiber filled plastic material, a glass material, or a high performance composite plastic molding material. After molding, the outer and/or inner portions of the molding material, and support ring if present, are machined away preferably exposing both inner and outer faces of the pole pieces embedded in the modulator cage. An MGM made using injection molding over a connected support ring and pole pieces reduces cost, and a carbon fiber plastic modulator cage increases strength.
    Type: Application
    Filed: February 4, 2022
    Publication date: September 1, 2022
    Inventor: Louis J. Finkle
  • Publication number: 20210257893
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating first rotor, and a second rotor fixed to a motor shaft. The first rotor is designed to have a low moment of inertia and includes an inductive element which is either an eddy current ring or angularly spaced apart first bars, and also includes permanent magnets on a surface of the first rotor facing the second rotor. The second rotor includes angularly spaced apart second bars. The first rotor is initially accelerated by cooperation of a rotating stator magnetic field with the inductive element. As the first rotor accelerates towards synchronous RPM, a rotating magnetic field of the permanent magnets cooperate with the second bars of the second rotor to accelerate the second rotor. At near synchronous speed the rotating stator magnetic field reaches through the first rotor and into the second rotor coupling the two rotors for efficient permanent magnet operation.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventor: Louis J. Finkle
  • Patent number: 10998802
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. The outer rotor is designed to have a low moment of inertia and includes angularly spaced apart first bars and permanent magnets on an inner surface of the outer rotor. The inner rotor includes angularly spaced apart second bars and interior flux barriers aligned with the second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, a rotating magnetic field of the permanent magnets cooperate with the second bars of the inner rotor to accelerate the inner rotor. At near synchronous speed the rotating stator magnetic field reaches through the outer rotor and into the inner rotor coupling the two rotors for efficient permanent magnet operation.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 4, 2021
    Inventor: Louis J. Finkle
  • Publication number: 20210101420
    Abstract: A tire inflator/bleed system allows tire pressure to be adjusted using controls in a vehicle and while in motion. The inflator system includes a disk portion which rotates with a wheel, and a ring portion rotatably attached to the disk. The disk may be a spacer between the wheel and a vehicle hub, be part of the wheel, or be part of the hub. The ring portion receives air from an air supply/bleeder and is in fluid communication with the disk portion to provide the air to or from the disk portion. The disk portion is in fluid communication with a tire interior to add or remove air from the tire.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 8, 2021
    Inventors: Louis J. Finkle, Robert Carale
  • Patent number: 10476363
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. The outer rotor is designed to have a low moment of inertia and includes angularly spaced apart first bars and permanent magnets on an inner surface of the outer rotor. The inner rotor includes angularly spaced apart second bars and interior flux barriers aligned with the second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, a rotating magnetic field of the permanent magnets cooperate with the second bars of the inner rotor to accelerate the inner rotor. At near synchronous speed the rotating stator magnetic field reaches through the outer rotor and into the inner rotor coupling the two rotors for efficient permanent magnet operation.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: November 12, 2019
    Inventor: Louis J. Finkle
  • Publication number: 20180212502
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. The outer rotor is designed to have a low moment of inertia and includes angularly spaced apart first bars and permanent magnets on an inner surface of the outer rotor. The inner rotor includes angularly spaced apart second bars and interior flux barriers aligned with the second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, a rotating magnetic field of the permanent magnets cooperate with the second bars of the inner rotor to accelerate the inner rotor. At near synchronous speed the rotating stator magnetic field reaches through the outer rotor and into the inner rotor coupling the two rotors for efficient permanent magnet operation.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventor: Louis J. Finkle
  • Publication number: 20180166959
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. The outer rotor is designed to have a low moment of inertia and includes angularly spaced apart first bars and permanent magnets on an inner surface of the outer rotor. The inner rotor includes angularly spaced apart second bars and interior flux barriers aligned with the second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, a rotating magnetic field of the permanent magnets cooperate with the second bars of the inner rotor to accelerate the inner rotor. At near synchronous speed the rotating stator magnetic field reaches through the outer rotor and into the inner rotor coupling the two rotors for efficient permanent magnet operation.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 14, 2018
    Inventor: Louis J. Finkle
  • Patent number: 9923439
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating Hybrid Permanent Magnet/squirrel Cage (HPMSC) outer rotor, and a Squirrel Cage (SC) inner rotor fixed to a motor shaft. The HPMSC rotor has spaced part permanent magnets and sets of first bars between consecutive permanent magnets. The SC rotor has groups of second bars, and slots in an outer surface between consecutive groups of the second bars. The HPMSC rotor is initially accelerated by cooperation of the stator with the first bars. The permanent magnets create a rotating magnetic field cooperating with the second bars to accelerate the SC rotor. As the HPMSC rotor accelerates towards synchronous RPM, the stator field reaches into the HPMSC rotor and cooperates with the permanent magnets to transition to synchronous operation. Salient poles created by cooperation of the permanent magnets with the slots lock the two rotors at synchronous RPM.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: March 20, 2018
    Assignee: MOTOR GENERATOR TECHNOLOGY, INC.
    Inventor: Louis J. Finkle
  • Patent number: 9923440
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. In one embodiment the outer rotor includes spaced apart first bars and permanent magnets, and the inner rotor includes spaced apart second bars. In another embodiment the outer rotor includes angularly spaced apart first bars but no permanent magnets, and the inner rotor includes permanent magnets and may also include angularly spaced apart second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, the inner rotor is accelerated to transition to efficient synchronous operation. The outer rotor thus acts as a clutch to decouple the inner rotor from the rotating stator magnetic field at startup and to couple the inner rotor to the rotating stator magnetic field at synchronous speed.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: March 20, 2018
    Assignee: MOTOR GENERATOR TECHNOLOGY, INC.
    Inventor: Louis J. Finkle
  • Patent number: 9484794
    Abstract: A hybrid induction motor includes an inductive rotor and an independently rotating permanent magnet rotor. The inductive rotor is a squirrel cage type rotor for induction motor operation at startup. The permanent magnet rotor is axially displaced and variably coupled to the inductive rotor (or to a motor load) through a clutch and is allowed to rotate independently of the inductive rotor at startup. The independently rotating permanent magnet rotor quickly reaches synchronous RPM at startup. As the inductive rotor approaches or reaches synchronous RPM, the coupling between the inductive rotor and the permanent magnet rotor increases until the two rotors are coupled the synchronous RPM and the motor transitions to efficient synchronous operation.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 1, 2016
    Inventor: Louis J. Finkle
  • Patent number: 9419504
    Abstract: A hybrid induction motor includes an inductive rotor and an independently rotating permanent magnet rotor. The inductive rotor is a squirrel cage type rotor for induction motor operation at startup. The permanent magnet rotor is variably coupled to the inductive rotor (or to a motor load) through a clutch and is allowed to rotate independently of the inductive rotor at startup. The independently rotating permanent magnet rotor quickly reaches synchronous RPM at startup. As the inductive rotor approaches or reaches synchronous RPM, the coupling between the inductive rotor and the inner permanent magnet rotor increases until the two rotors are coupled at the synchronous RPM and the motor transitions to efficient synchronous operation.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 16, 2016
    Inventor: Louis J. Finkle
  • Publication number: 20150194868
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating outer rotor, and an inner rotor fixed to a motor shaft. In one embodiment the outer rotor includes spaced apart first bars and permanent magnets, and the inner rotor includes spaced apart second bars. In another embodiment the outer rotor includes angularly spaced apart first bars but no permanent magnets, and the inner rotor includes permanent magnets and may also include angularly spaced apart second bars. The outer rotor is initially accelerated by cooperation of a rotating stator magnetic field with the first bars. As the outer rotor accelerates towards synchronous RPM, the inner rotor is accelerated to transition to efficient synchronous operation. The outer rotor thus acts as a clutch to decouple the inner rotor from the rotating stator magnetic field at startup and to couple the inner rotor to the rotating stator magnetic field at synchronous speed.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 9, 2015
    Inventor: Louis J. Finkle
  • Publication number: 20150194866
    Abstract: A hybrid induction motor includes a fixed stator, an independently rotating HPMSC outer rotor, and a Squirrel Cage (SC) inner rotor fixed to a motor shaft. The HPMSC rotor has spaced part permanent magnets and sets of first bars between consecutive permanent magnets. The SC rotor has groups of second bars, and slots in an outer surface between consecutive groups of the second bars. The HPMSC rotor is initially accelerated by cooperation of the stator with the first bars. The permanent magnets create a rotating magnetic field cooperating with the second bars to accelerate the SC rotor. As the HPMSC rotor accelerates towards synchronous RPM, the stator field reaches into the HPMSC rotor and cooperates with the permanent magnets to transition to synchronous operation. Salient poles created by cooperation of the permanent magnets with the slots lock the two rotors at synchronous RPM.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Inventor: Louis J. Finkle
  • Patent number: 8978238
    Abstract: A method and apparatus for terminating stator windings. The apparatus includes stator winding termination disks having “U” shaped winding mouths for each group of stator winding ends. After winding the stator, the stator winding termination disks are laid over the termination end of the stator, the unterminated stator windings for one phase of the stator are placed into the “U” shaped winding mouths, the “U” shaped winding mouths are crimped over the unterminated stator windings, and pressure and heat are applied to melt insulation on the unterminated stator winding ends and form an electrical connection between the stator winding termination disks and stator windings for each phase of the stator and for common.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: March 17, 2015
    Inventor: Louis J. Finkle
  • Patent number: 8952587
    Abstract: Apparatus and method for tuning the magnetic field of windmill generators to obtain efficient operation over a broad RPM range. The windmill generator includes fixed windings (or stator) inside a rotating rotor carrying permanent magnets. The permanent magnets are generally cylindrical and have North and South poles formed longitudinally in the magnets. Magnetically conducting circuits are formed by the magnets residing in magnetic conducting pole pieces (for example, low carbon or soft steel, and/or laminated insulated layers, of non-magnetizable material). Rotating the permanent magnets, or rotating non-magnetically conducting shunting pieces, inside the pole pieces, either strengthens or weakens the resulting magnetic field to adjust the windmill generators for low RPM torque or for efficient high RPM efficiency. Varying the rotor magnetic field adjusts the voltage output of the windmill generators allowing the windmill generator to maintain a fixed voltage output.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: February 10, 2015
    Inventor: Louis J. Finkle
  • Publication number: 20130278095
    Abstract: A hybrid induction motor includes an inductive rotor and an independently rotating permanent magnet rotor. The inductive rotor is a squirrel cage type rotor for induction motor operation at startup. The permanent magnet rotor is variably coupled to the inductive rotor (or to a motor load) through a clutch and is allowed to rotate independently of the inductive rotor at startup. The independently rotating permanent magnet rotor quickly reaches synchronous RPM at startup. As the inductive rotor approaches or reaches synchronous RPM, the coupling between the inductive rotor and the inner permanent magnet rotor increases until the two rotors are coupled at the synchronous RPM and the motor transitions to efficient synchronous operation.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Inventor: Louis J. Finkle
  • Publication number: 20130278096
    Abstract: A hybrid induction motor includes an inductive rotor and an independently rotating permanent magnet rotor. The inductive rotor is a squirrel cage type rotor for induction motor operation at startup. The permanent magnet rotor is axially displaced and variably coupled to the inductive rotor (or to a motor load) through a clutch and is allowed to rotate independently of the inductive rotor at startup. The independently rotating permanent magnet rotor quickly reaches synchronous RPM at startup. As the inductive rotor approaches or reaches synchronous RPM, the coupling between the inductive rotor and the permanent magnet rotor increases until the two rotors are coupled at the synchronous RPM and the motor transitions to efficient synchronous operation.
    Type: Application
    Filed: November 29, 2012
    Publication date: October 24, 2013
    Inventor: Louis J. Finkle
  • Publication number: 20130212868
    Abstract: A method and apparatus for terminating stator windings. The apparatus includes stator winding termination disks having “U” shaped winding mouths for each group of stator winding ends. After winding the stator, the stator winding termination disks are laid over the termination end of the stator, the unterminated stator windings for one phase of the stator are placed into the “U” shaped winding mouths, the “U” shaped winding mouths are crimped over the unterminated stator windings, and pressure and heat are applied to melt insulation on the unterminated stator winding ends and form an electrical connection between the stator winding termination disks and stator windings for each phase of the stator and for common.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 22, 2013
    Inventor: Louis J. Finkle