Patents by Inventor Louis N. Koppel

Louis N. Koppel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6987832
    Abstract: In the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films, an approach is presented for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another approach involves aligning an angle-resolved X-ray reflectometer using a focusing optic, such as a Johansson crystal. Another approach relates to validating the focusing optic. Another approach relates to the alignment of the focusing optic with the X-ray source. Another approach concerns the correction of measurements errors caused by the tilt or slope of the sample. Yet another approach concerns the calibration of the vertical position of the sample.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: January 17, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Publication number: 20040218717
    Abstract: In the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films, an approach is presented for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another approach involves aligning an angle-resolved X-ray reflectometer using a focusing optic, such as a Johansson crystal. Another approach relates to validating the focusing optic. Another approach relates to the alignment of the focusing optic with the X-ray source. Another approach concerns the correction of measurements errors caused by the tilt or slope of the sample. Yet another approach concerns the calibration of the vertical position of the sample.
    Type: Application
    Filed: June 4, 2004
    Publication date: November 4, 2004
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Patent number: 6770886
    Abstract: A detector assembly is introduced that provides shielding of irradiation vulnerable regions of an X-ray detector against directly impinging and scattered X-rays. A shielding unit has a primary aperture to shape an X-ray beam reflected from a test area of a work piece such that the shaped beam directly impinges an X-ray sensing area of the detector. A secondary aperture shields off X-rays scattering off along the edges of the primary aperture. In the preferred embodiment, the shielding unit is a monolithic structure. An area between primary and secondary aperture is laterally recessed to prevent a portion of scattered X-rays from being deflected onto the sensing area.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: August 3, 2004
    Assignee: Therma-Wave, Inc.
    Inventors: Louis N. Koppel, Charles Schmelz
  • Patent number: 6768785
    Abstract: The present invention relates to the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films. An aspect of the present invention describes a method for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another aspect of the present invention relates to a method for aligning an angle-resolved X-ray reflectometer that uses a focusing optic, which may preferably be a Johansson crystal. Another aspect of the present invention is to validate the focusing optic. Another aspect of the present invention relates to the alignment of the focusing optic with the X-ray source. Another aspect of the present invention concerns the correction of measurements errors caused by the tilt or slope of the sample.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: July 27, 2004
    Assignee: Therma-Wave, Inc.
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Patent number: 6744850
    Abstract: An x-ray reflectometry system for measuring thin film samples. The system includes an adjustable x-ray source, such that characteristics of an x-ray probe beam output by the x-ray source can be adjusted to improve the resolution of the measurement system. The x-ray probe beam can also be modified to increase the speed of evaluating the thin film sample, for situations where some degree of resolution can be sacrificed. In addition, or alternatively, the system can also provide an adjustable detector position device which allows the position of the detector to be adjusted to increase the resolution of the system, or to reduce the time it takes to evaluate the thin film material.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: June 1, 2004
    Assignee: Therma-Wave, Inc.
    Inventors: Jeffrey T. Fanton, Craig Uhrich, Louis N. Koppel
  • Publication number: 20040052330
    Abstract: The present invention relates to the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films. An aspect of the present invention describes a method for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another aspect of the present invention relates to a method for aligning an angle-resolved X-ray reflectometer that uses a focusing optic, which may preferably be a Johansson crystal. Another aspect of the present invention is to validate the focusing optic. Another aspect of the present invention relates to the alignment of the focusing optic with the X-ray source. Another aspect of the present invention concerns the correction of measurements errors caused by the tilt or slope of the sample.
    Type: Application
    Filed: August 19, 2003
    Publication date: March 18, 2004
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Patent number: 6643354
    Abstract: The present invention relates to the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films. An aspect of the present invention describes a method for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another aspect of the present invention relates to a method for aligning an angle-resolved X-ray reflectometer that uses a focusing optic, which may preferably be a Johansson crystal. Another aspect of the present invention is to validate the focusing optic. Another aspect of the present invention relates to the alignment of the focusing optic with the X-ray source. Another aspect of the present invention concerns the correction of measurements errors caused by the tilt or slope of the sample.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: November 4, 2003
    Assignee: Therma-Wave, Inc.
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Patent number: 6507634
    Abstract: A metrology system and method for measuring the thickness of thin-films of semiconductor wafer. This system and method analyze x-ray reflectivity data to determine transmission characteristics of thin-film layers. Based on these transmission characteristics the thickness of the thin-layer can be determined. Unlike some prior systems and methods, the system and method herein does not determine the thickness of the thin-film layer based on a fringe pattern in reflectivity for the thin-film layer. The fact that the system and method herein does not rely the fringe pattern is particularly advantageous in situations where the thin-film layer is of thickness which makes it very difficult to resolve the fringe pattern in the reflectivity data.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: January 14, 2003
    Assignee: Therma-Wave, Inc.
    Inventors: Louis N. Koppel, William Johnson
  • Patent number: 6453006
    Abstract: The present invention relates to the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films. An aspect of the present invention describes a method for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another aspect of the present invention relates to a method for aligning an angle-resolved X-ray reflectometer that uses a focusing optic, which may preferably be a Johansson crystal. Another aspect of the present invention is to validate the focusing optic. Another aspect of the present invention relates to the alignment of the focusing optic with the X-ray source. Another aspect of the present invention concerns the correction of measurements errors caused by the tilt or slope of the sample.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: September 17, 2002
    Assignee: Therma-Wave, Inc.
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Publication number: 20020110218
    Abstract: The present invention relates to the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films. An aspect of the present invention describes a method for accurately determining CO for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another aspect of the present invention relates to a method for aligning an angle-resolved X-ray reflectometer that uses a focusing optic, which may preferably be a Johansson crystal. Another aspect of the present invention is to validate the focusing optic. Another aspect of the present invention relates to the alignment of the focusing optic with the X-ray source. Another aspect of the present invention concerns the correction of measurements errors caused by the tilt or slope of the sample.
    Type: Application
    Filed: April 17, 2002
    Publication date: August 15, 2002
    Inventors: Louis N. Koppel, Craig E. Uhrich, Jon Opsal
  • Publication number: 20020097837
    Abstract: An x-ray reflectometry system for measuring thin film samples. The system includes an adjustable x-ray source, such that characteristics of an x-ray probe beam output by the x-ray source can be adjusted to improve the resolution of the measurement system. The x-ray probe beam can also be modified to increase the speed of evaluating the thin film sample, for situations where some degree of resolution can be sacrificed. In addition, or alternatively, the system can also provide an adjustable detector position device which allows the position of the detector to be adjusted to increase the resolution of the system, or to reduce the time it takes to evaluate the thin film material.
    Type: Application
    Filed: October 24, 2001
    Publication date: July 25, 2002
    Inventors: Jeffrey T. Fanton, Craig Uhrich, Louis N. Koppel
  • Patent number: 5619548
    Abstract: A monochromator positioned in the path of a plurality of X-rays to simultaneously impinge the plurality of X-rays onto a thin-film at various angles of incidence, typically greater than a critical angle .psi..sub.c. The monochromator may be cylindrically or toroidally shaped, defining two focal areas with a source of X-rays positioned at the first focal point and a sample containing the thin-film layer positioned at the second focal point. A position sensitive detector is positioned to sense monochromatic X-rays reflected from the thin-film and produce a signal corresponding to both intensity and an angle of reflection of the monochromatic X-rays sensed. A processor is connected to receive signals produced by the detector to determine, as a function of intensity and angle of reflection of the monochromatic X-rays impinging on the detector, various properties of the structure of the thin-film layer, including the thickness, density and smoothness.
    Type: Grant
    Filed: August 11, 1995
    Date of Patent: April 8, 1997
    Assignee: Oryx Instruments and Materials Corp.
    Inventor: Louis N. Koppel