Patents by Inventor Louis R. Kavoussi

Louis R. Kavoussi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230356001
    Abstract: Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including Mill. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 11745027
    Abstract: Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including MRI. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: September 5, 2023
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Publication number: 20200086140
    Abstract: Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including MRI. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
    Type: Application
    Filed: May 2, 2019
    Publication date: March 19, 2020
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 10315046
    Abstract: Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including MRI. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 11, 2019
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 10024160
    Abstract: A stepper motor suitable for use in a medical imaging environment has (a) a cylindrical central gear having an external surface with circumferentially distributed and radially directed teeth, (b) a shaft for mounting the central gear such that it is constrained to move in rotational motion about its centerline, (c) a cylindrical hoop gear having a bore with an internal surface having circumferentially distributed and radially directed teeth, (d) level arm crank mechanisms for mounting the hoop gear such that it is constrained to move in translational-circular motion about the central gear's centerline, wherein this central gear is further configured to fit within the hoop gear's bore in such a manner that a plurality of the central gear and hoop gear teeth intermesh and cooperate so that the planetary movement of the hoop gear causes the central gear to rotate, and (e) piston mechanisms for applying a fluid pressure driven force to specified points on the hoop gear so as to cause its movement.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 17, 2018
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 8403675
    Abstract: A training and/or evaluating device is provided particularly useful in performing laparoscopic procedures, radiological procedures, and precise surgeries that simulates the structure and dynamic motion of the corresponding anatomical structure on which the procedure takes place. The device includes an outer housing, which may be designed to mimic the body wall, in which one or more organs are located. Motion of the organ(s), as a result of respiration, pulmonary action, circulation, digestion and other factors present in a live body, is simulated in the device so as to provide accurate dynamic motion of the organs during a procedure.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: March 26, 2013
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Dumitru Mazilu, Alexandru Patriciu, Louis R. Kavoussi
  • Publication number: 20120076681
    Abstract: A stepper motor suitable for use in a medical imaging environment has (a) a cylindrical central gear having an external surface with circumferentially distributed and radially directed teeth, (b) a shaft for mounting the central gear such that it is constrained to move in rotational motion about its centerline, (c) a cylindrical hoop gear having a bore with an internal surface having circumferentially distributed and radially directed teeth, (d) level arm crank mechanisms for mounting the hoop gear such that it is constrained to move in translational-circular motion about the central gear's centerline, wherein this central gear is further configured to fit within the hoop gear's bore in such a manner that a plurality of the central gear and hoop gear teeth intermesh and cooperate so that the planetary movement of the hoop gear causes the central gear to rotate, and (e) piston mechanisms for applying a fluid pressure driven force to specified points on the hoop gear so as to cause its movement.
    Type: Application
    Filed: October 11, 2011
    Publication date: March 29, 2012
    Applicant: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 8061262
    Abstract: A stepper motor suitable for use in a medical imaging environment has (a) a cylindrical central gear having an external surface with circumferentially distributed and radially directed teeth, (b) a shaft for mounting the central gear such that it is constrained to move in rotational motion about its centerline, (c) a cylindrical hoop gear having a bore with an internal surface having circumferentially distributed and radially directed teeth, (d) level arm crank mechanisms for mounting the hoop gear such that it is constrained to move in translational-circular motion about the central gear's centerline, wherein this central gear is further configured to fit within the hoop gear's bore in such a manner that a plurality of the central gear and hoop gear teeth intermesh and cooperate so that the planetary movement of the hoop gear causes the central gear to rotate, and (e) piston mechanisms for applying a fluid pressure driven force to specified points on the hoop gear so as to cause its movement.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: November 22, 2011
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 7822466
    Abstract: A system and method for CT guided instrument targeting including a radiolucent instrument driver; a robot and a control box. The robot includes a robotic module that positions the radiolucent driver about two directions coincident a predetermined point. The control device is connected to the robot and the radiolucent instrument driver. The control driver sends a robot control signal to the robot that causes the robotic module to place the radiolucent instrument driver in a desired orientation with respect to the predetermined point. After the radiolucent instrument driver is in the desired orientation, the control device sends a driver control signal to the radiolucent instrument driver that causes the radiolucent driver to insert a medical instrument or device through the predetermined point to a location proximate a target point in a patient.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: October 26, 2010
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Dumitru Mazilu, Louis R. Kavoussi
  • Publication number: 20100240989
    Abstract: A system and method for CT guided instrument targeting including a radiolucent instrument driver; a robot and a control box. The robot includes a robotic module that positions the radiolucent driver about two directions coincident a predetermined point. The control device is connected to the robot and the radiolucent instrument driver. The control driver sends a robot control signal to the robot that causes the robotic module to place the radiolucent instrument driver in a desired orientation with respect to the predetermined point. After the radiolucent instrument driver is in the desired orientation, the control device sends a driver control signal to the radiolucent instrument driver that causes the radiolucent driver to insert a medical instrument or device through the predetermined point to a location proximate a target point in a patient.
    Type: Application
    Filed: April 25, 2003
    Publication date: September 23, 2010
    Inventors: Dan Stoianovici, Dumitru Mazilu, Louis R. Kavoussi
  • Publication number: 20100041938
    Abstract: Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including MRI. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
    Type: Application
    Filed: December 4, 2006
    Publication date: February 18, 2010
    Applicant: The Johns Hopkins University
    Inventors: Dan Stoianovici, Alexandru Patriciu, Dumitru Mazilu, Doru Petrisor, Louis R. Kavoussi
  • Patent number: 7247116
    Abstract: A motor suitable for use in a medical imaging environment has (a) a cylindrical outer gear having a bore with a centerline and an internal surface with circumferentially distributed and radially directed teeth, (b) a means for mounting this outer gear such that it is constrained to move in rotational motion about its centerline, (c) a cylindrical planetary gear having a bore and an external surface having circumferentially distributed and radially directed teeth, (d) a means located within the planetary gear bore for applying a fluid pressure driven force to cause it to move in translational-circular motion about the outer gear's centerline, and (e) wherein the teeth of these gears are configured so as to cooperate such that the translational-circular motion of the planetary gear causes the rotational movement of the outer gear.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 24, 2007
    Assignee: The John Hopkins University
    Inventors: Dan Stoianovici, Louis R. Kavoussi
  • Patent number: 7086309
    Abstract: A motor suitable for use in a medical imaging environment has (a) a centrally located means for actuating a radial wave, (b) a deformable flexspline having an inner surface and a toothed outer surface with a first specified number of teeth, and (c) a circular spline having a toothed inner surface with a second specified number of teeth which is different than the first specified number of teeth in the flexspline, wherein the actuation means is operable so that the action of its radial wave causes at least one of the flexspline teeth to engage at a point the toothed side of the circular spline in such a manner that an engagement point passes as a wave around the inner perimeter of the circular spine, with the movement of this engagement point causing the flexspline to rotate around its central axis.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: August 8, 2006
    Assignee: The Johns Hopkins University
    Inventors: Dan Stoianovici, Louis R. Kavoussi
  • Patent number: 7021173
    Abstract: A remote center of motion robotic system including a base unit and a plurality of linking units. The base unit is rotatable about a first axis. The plurality of linking units are coupled with one another. At least two of the linking units are kept parallel to each another during motion. The plurality of linking units are coupled with that base unit at a first end. The plurality of linking units are rotatable about a second axis by changing an angle between each of the plurality of links.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 4, 2006
    Assignee: The John Hopkins University
    Inventors: Dan Stoianovici, Louis L. Whitcomb, Dumitru Mazilu, Russell H. Taylor, Louis R. Kavoussi
  • Patent number: 7008373
    Abstract: A system and method for image guided instrument targeting including a robot unit coupled with an instrument, an imaging unit, and a first control unit, which is coupled with the robot unit and coupled with the imaging unit. The control unit receives the imaging data about a target and about the instrument from the imaging unit and controls the robot unit to properly orienting the instrument for insertion, based upon the imaging data.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 7, 2006
    Assignee: The Johns Hopkins University
    Inventors: Daniel Stoianovici, Alexandru Patriciu, Louis R. Kavoussi
  • Publication number: 20030221504
    Abstract: A remote center of motion robotic system including a base unit and a plurality of linking units. The base unit is rotatable about a first axis. The plurality of linking units are coupled with one another. At least two of the linking units are kept parallel to each another during motion. The plurality of linking units are coupled with that base unit at a first end. The plurality of linking units are rotatable about a second axis by changing an angle between each of the plurality of links.
    Type: Application
    Filed: February 6, 2003
    Publication date: December 4, 2003
    Inventors: Dan Stoianovici, Louis L. Whitcomb, Dumitru Mazilu, Russell H. Taylor, Louis R. Kavoussi
  • Patent number: 6599256
    Abstract: A tubular anatomical structure in a mammalian subject is occluded by directing ultrasonic energy from outside of the body. For example, a male subject may be sterilized by directing ultrasonic energy through the skin of the scrotum, onto the vas deferens. The focal spot of an ultrasonic transducer may be registered with the structure to be treated by means of guide members on a probe holding the transducer. The procedure is simple and can be entirely non-invasive. Apparatus for performing this and other treatments may be provided as a disposable unit, and the guide members may be arranged to hold a fold of tissue without substantially obstructing the sonic path from the transducer to the fold.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: July 29, 2003
    Assignee: Transurgical, Inc.
    Inventors: David E. Acker, Louis R. Kavoussi, Bharat B. Pant, Patrick David Lopath, Emad S. Ebbini
  • Publication number: 20030120283
    Abstract: A system and method for image guided instrument targeting including a robot unit coupled with an instrument, an imaging unit, and a first control unit, which is coupled with the robot unit and coupled with the imaging unit. The control unit receives the imaging data about a target and about the instrument from the imaging unit and controls the robot unit to properly orienting the instrument for insertion, based upon the imaging data.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 26, 2003
    Inventors: Dan Stoianovici, Alexandru Patriciu, Louis R. Kavoussi
  • Patent number: 6400979
    Abstract: A method for performing radiological-image-guided percutaneous surgery with a system which includes a radiological image generating device for generating an image of a target anatomy of a patient, and a needle insertion mechanism disposed adjacent the image generating device and having a needle adapted to be inserted into the patient. The method includes the steps of: determining a needle trajectory of the needle by positioning the image generating device for aligning, in the image generated by the image generating device, a desired skin insertion site of the patient with a target region of the target anatomy; locking the needle in a direction of the needle trajectory; and repositioning the image generating device to obtain a lateral view of the needle trajectory for viewing an insertion depth and path of the needle during its insertion into the patient.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: June 4, 2002
    Assignee: Johns Hopkins University
    Inventors: Dan Stoianovici, Louis R. Kavoussi, Louis L. Whitcomb, Russell H. Taylor, Jeffrey A. Cadeddu, Roger D. Demaree, Stephen A. Basile
  • Patent number: 6337994
    Abstract: An electrical impedance probe is provided that includes a surgical needle. In an exemplary embodiment, the probe is a two-part trocar needle designed to acquire impedance measurements at its tip. The impedance measurements are representative of the local properties of a biological substance at the needle tip. Thus, the probe may be used to confirm needle insertion into a desired anatomical target or to identify the nature of the cells surrounding the tip of the needle. In urology, this sensor is used for confirming the needle insertion into the urinary tract, for localizing renal cell carcinoma, and prostate cancer.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: January 8, 2002
    Assignee: Johns Hopkins University
    Inventors: Dan Stoianovici, Louis R. Kavoussi, Mohamad Allaf, Stephen Jackman