Patents by Inventor Lowell J. Berg

Lowell J. Berg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230278687
    Abstract: An autonomous sailing vessel may include a hull, a mast, a sail, and a sail release device. The mast may be mechanically coupled to the hull. The sail may be mechanically coupled to the mast. The sail release device may be operably coupled to the sail and may be configured to automatically release the sail to spill excess wind. Alternatively or additionally, the sail may include a fore sail element coupled to the mast and an aft sail element rotatably coupled at a fore of the aft sail element to an aft of the fore sail element. In this and other embodiments, the autonomous sailing vessel may further include a camber control assembly to automatically set a camber angle between the fore and aft sail elements.
    Type: Application
    Filed: November 10, 2022
    Publication date: September 7, 2023
    Inventors: Lowell J. Berg, Jonathan Barrows, Eamon Carrig, Carl Nelson
  • Patent number: 11498650
    Abstract: An autonomous sailing vessel may include a hull, a mast, a sail, and a sail release device. The mast may be mechanically coupled to the hull. The sail may be mechanically coupled to the mast. The sail release device may be operably coupled to the sail and may be configured to automatically release the sail to spill excess wind. Alternatively or additionally, the sail may include a fore sail element coupled to the mast and an aft sail element rotatably coupled at a fore of the aft sail element to an aft of the fore sail element. In this and other embodiments, the autonomous sailing vessel may further include a camber control assembly to automatically set a camber angle between the fore and aft sail elements.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: November 15, 2022
    Assignee: Signal Ventures LTD
    Inventors: Lowell J. Berg, Jonathan Barrows, Eamon Carrig, Carl Nelson
  • Patent number: 10921809
    Abstract: An autonomous sailing vessel may include a hull, a mast, a sail, and a rudder. The mast may be mechanically coupled to the hull. The sail may be mechanically coupled to the mast. The rudder may be mechanically coupled to the hull. A heading of the autonomous sailing vessel may be regulated by actively controlling the rudder without actively controlling the sail. Alternatively or additionally, the autonomous sailing vessel may include an anticapsize stabilizer tank, a lidar system, and/or marine mammal monitoring and identification.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 16, 2021
    Assignee: Autonomous Marine Systems, Inc.
    Inventors: Lowell J. Berg, Eamon Carrig, Shawn Dooley, Ravijit Paintal
  • Publication number: 20200262532
    Abstract: An autonomous sailing vessel may include a hull, a mast, a sail, and a sail release device. The mast may be mechanically coupled to the hull. The sail may be mechanically coupled to the mast. The sail release device may be operably coupled to the sail and may be configured to automatically release the sail to spill excess wind. Alternatively or additionally, the sail may include a fore sail element coupled to the mast and an aft sail element rotatably coupled at a fore of the aft sail element to an aft of the fore sail element. In this and other embodiments, the autonomous sailing vessel may further include a camber control assembly to automatically set a camber angle between the fore and aft sail elements.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 20, 2020
    Inventors: Lowell J. Berg, Jonathan Barrows, Eamon Carrig, Carl Nelson
  • Publication number: 20190339700
    Abstract: An autonomous sailing vessel may include a hull, a mast, a sail, and a rudder. The mast may be mechanically coupled to the hull. The sail may be mechanically coupled to the mast. The rudder may be mechanically coupled to the hull. A heading of the autonomous sailing vessel may be regulated by actively controlling the rudder without actively controlling the sail. Alternatively or additionally, the autonomous sailing vessel may include an anticapsize stabilizer tank, a lidar system, and/or marine mammal monitoring and identification.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Lowell J. Berg, Eamon Carrig, Shawn Dooley, Ravijit Paintal
  • Patent number: 9773933
    Abstract: In an embodiment, a solar energy system includes multiple photovoltaic modules, each oriented substantially at a same angle relative to horizontal. The angle is independent of a latitude of an installation site of the solar energy system and is greater than or equal to 15 degrees. The solar energy system defines a continuous area within a perimeter of the solar energy system. The solar energy system is configured to capture at the photovoltaic modules substantially all light incoming towards the continuous area over an entire season.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 26, 2017
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Kurt Korkowski, Lance E. Stover, Thomas L. Murnan, Orville Dodd
  • Publication number: 20170085094
    Abstract: In an example embodiment, a method to operate a PV module includes measuring module output power collectively generated by a plurality of power conversion circuits of the PV module. The module output power collectively generated by the plurality of power conversion circuits is characterized by a module power output curve having a peak. A current measured output power is compared to a preceding measured output power. Based on a preceding direction variable indicating a side of the peak on which the PV module was previously operating and the comparison of the current measured output power to the preceding measured output power: a current direction variable indicating a side of the peak on which the PV module is currently operating is determined, and a switching period of the power conversion circuits is adjusted.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20170070188
    Abstract: An asymmetric wave photovoltaic (PV) system includes at least one asymmetric wavelet coupled. The at least one asymmetric wavelet includes front and rear PV modules of equal size. The front and rear PV modules are coupled together to form a peak of the at least one asymmetric wavelet. The front PV module is supported at a first angle. The rear PV module is supported at a second angle that is different than the first angle.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Dallas W. Meyer, Lowell J. Berg, Richard Amy, Thomas L. Murnan, Lance E. Stover, Raymond W. Knight, Kevin Batko, Dan Heneman, Steve Sazama, Larry Weiss, Timothy C. Johnson
  • Patent number: 9543890
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 10, 2017
    Assignee: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20160111573
    Abstract: In an example, a photovoltaic (PV) module includes multiple PV cells, a continuous backsheet, a circuit card, and a buried first polarity contact. The PV cells are arranged in rows and columns. The continuous backsheet is positioned behind the PV cells, includes a ground plane for the PV cells, and is electrically coupled between a first row and a last row of the PV cells. The circuit card is mechanically coupled to a back of the PV module and includes a first connector with a first polarity and a second connector with an opposite second polarity. The buried first polarity contact is positioned behind the PV cells, is electrically coupled to a back of each PV cell in one of the rows of the PV cells, and extends through a slot formed in the continuous backsheet to electrical contact with the first connector of the circuit card.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 21, 2016
    Inventors: Dallas W. Meyer, Lowell J. Berg, Steven E. Wheeler
  • Publication number: 20140360561
    Abstract: In an embodiment, a photovoltaic (PV) system includes a direct current (DC) bus, multiple PV modules and multiple inverter units. The PV modules are electrically coupled in parallel to the DC bus. The inverter units have DC inputs electrically coupled in parallel to the DC bus and have alternating current (AC) outputs electrically coupled to an AC grid.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Dallas W. Meyer, Lowell J. Berg, Joel Cannon, Shady Gross, Lance E. Stover
  • Patent number: 8829330
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 9, 2014
    Assignee: Tenksolar, Inc.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Publication number: 20140174535
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Publication number: 20140035373
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: TenKsolar, Inc.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20130312812
    Abstract: In an embodiment, a solar energy system includes multiple photovoltaic modules, each oriented substantially at a same angle relative to horizontal. The angle is independent of a latitude of an installation site of the solar energy system and is greater than or equal to 15 degrees. The solar energy system defines a continuous area within a perimeter of the solar energy system. The solar energy system is configured to capture at the photovoltaic modules substantially all light incoming towards the continuous area over an entire season.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: Tenksolar, Inc
    Inventors: Dallas W. Meyer, Lowell J. Berg, Kurt Korkowski, Lance E. Stover, Thomas L. Murnan, Orville Dodd
  • Patent number: 8563847
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Tenksolar, Inc
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20120204935
    Abstract: In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 16, 2012
    Applicant: tenKsolar
    Inventors: Dallas W. Meyer, Lowell J. Berg, Lance E. Stover, Orville D. Dodd, Thomas L. Murnan
  • Publication number: 20100282293
    Abstract: In one example, a photovoltaic module includes a plurality of discrete photovoltaic cells arranged in a plurality of cell rows, and a substantially electrically conductive and continuous area backsheet. The photovoltaic cells in each cell row are electrically connected in parallel to each other. The cell rows are electrically connected in series to each other and include a first row and a last row. The backsheet forms a current return path between the first and last rows. The photovoltaic cells are configured such that, in operation, current flows substantially uni-directionally through the plurality of photovoltaic cells between the first row and the last row.
    Type: Application
    Filed: June 15, 2010
    Publication date: November 11, 2010
    Applicant: TENKSOLAR
    Inventors: Dallas W. Meyer, Lowell J. Berg, Forrest C. Meyer, Raymond W. Knight, Steven E. Wheeler, John P. Novotny
  • Publication number: 20100212720
    Abstract: In one embodiment, a solar energy system includes a plurality of module rows and a plurality of reflector rows. Each module row includes a plurality of PV modules. Each PV module includes a plurality of PV cells arranged in a plurality of cell rows, the PV cells in each cell row being electrically connected in parallel to each other, and the plurality of cell rows being electrically connected in series to each other. Each reflector row includes a plurality of reflectors. The reflector rows are interposed between the module rows such that each reflector row is mechanically interconnected between two adjacent module rows and is arranged to reflect light having some incident angles on to one of the two adjacent module rows.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 26, 2010
    Applicant: TENKSOLAR, INC.
    Inventors: Dallas W. Meyer, Lowell J. Berg, Thomas L. Murnan, Orville D. Dodd
  • Patent number: 6870707
    Abstract: A method of contouring a surface of a slider for supporting a transducer relative to a data storage medium includes applying a lithographic resist layer to the slider surface. The resist layer is then exposed through a single mask having 3a mask pattern defined by variation in an optical density through the mask. The resist layer is exposed in an exposure pattern corresponding to the mask pattern. Portions of the resist layer are removed as a function of the exposure pattern to produce a vertically contoured resist layer. The slider surface is etched through the vertically contoured resist layer during a single etching step to form a vertically contoured surface feature within the slider surface.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: March 22, 2005
    Assignee: Seagate Technology LLC
    Inventors: Lanshi Zheng, Lance E. Stover, Jianxin Zhu, Weimin Qian, Lowell J. Berg, Moshe Olim