Patents by Inventor Lowell L. Wood

Lowell L. Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975069
    Abstract: Emulsion-based and micromolded (“MM”) or three dimensional printed (“3DP”) polymeric formulations for single injection of antigen, preferably releasing at two or more time periods, have been developed. Formulations are preferably formed of biocompatible, biodegradable polymers. Discrete regions encapsulating antigen, alone or in combination with other antigens, adjuvants, stabilizers, and release modifiers, are present in the formulations. Antigen is preferably present in excipient at the time of administration, or on the surface of the formulation, for immediate release, and incorporated within the formulation for release at ten to 45 days after initial release of antigen, optionally at ten to 90 day intervals for release of antigen in one or more additional time periods. Antigen may be stabilized through the use of stabilizing agents such as trehalose glass. In a preferred embodiment for immunization against polio, antigen is released at the time of administration, and two, four and six months thereafter.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: May 7, 2024
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, TOKITAE LLC
    Inventors: Ana Jaklenec, William Gates, Philip A. Welkhoff, Boris Nikolic, Lowell L. Wood, Jr., Robert S. Langer, Thanh Duc Nguyen, Stephany Yi Tzeng, James J. Norman, Kevin McHugh
  • Patent number: 11969393
    Abstract: In some embodiments, an affixed group of pharmaceutical vials with frangible connectors includes: a plurality of pharmaceutical vials arranged as a group of pharmaceutical vials, each of the plurality of pharmaceutical vials shaped and positioned to minimize a total volume of the group of pharmaceutical vials, each of the pharmaceutical vials including at least one external side with a surface configured to reversibly mate with a corresponding external side and a surface of an adjacent pharmaceutical vial; and a plurality of frangible connectors, wherein at least one frangible connector is affixed to the surface of at least two of the plurality of pharmaceutical vials within the group of pharmaceutical vials, and at least one frangible connector is affixed to each of the plurality of pharmaceutical vials.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: April 30, 2024
    Inventors: John Boomgard, Fong-Li Chou, Philip A. Eckhoff, Fridrik Larusson, Shieng Liu, Krishnan Natarajan, Nels R. Peterson, Lowell L. Wood, Jr.
  • Publication number: 20240122080
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Application
    Filed: October 9, 2023
    Publication date: April 11, 2024
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, JR., Muriel Y. Ishikawa, Victoria Y.H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Publication number: 20240085623
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Application
    Filed: September 20, 2023
    Publication date: March 14, 2024
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K.Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, JR.
  • Patent number: 11897768
    Abstract: Systems for producing hydrogen gas for local distribution, consumption, and/or storage, and related devices and methods are disclosed herein. A representative system includes a pyrolysis reactor that can be coupled to a supply of reaction material that includes a hydrocarbon. The reactor includes one or more flow channels positioned to transfer heat to the reaction material to convert the hydrocarbon into an output that includes hydrogen gas and carbon particulates. The system also includes a carbon separation system operably coupled to the pyrolysis reactor to separate the hydrogen gas the carbon particulates in the output. In various embodiments, the system also includes components to locally consume the filtered hydrogen gas.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: February 13, 2024
    Assignee: Modern Hydrogen, Inc.
    Inventors: Justin B. Ashton, Roelof E. Groenewald, Kevin J. Hughes, Arvind Kannan, William Kokonaski, Max N. Mankin, Tony S. Pan, Lowell L Wood, John J. Lorr, Amit Goyal, Guido Radaelli, Vikram Seshadri
  • Patent number: 11867464
    Abstract: Portage storage containers including controlled evaporative cooling systems are described herein. In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a storage region, an evaporative region adjacent to the storage region, a desiccant region adjacent to the outside of the container, and an insulation region positioned between the evaporative region and the desiccant region. A vapor conduit with an attached vapor control unit has a first end within the evaporative region and a second end within the desiccant region. In some embodiments, the controlled evaporative cooling systems are positioned in a radial configuration within the portable container.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: January 9, 2024
    Assignee: Tokitae LLC
    Inventors: Fong Li Chou, Philip A. Eckhoff, Lawrence Morgan Fowler, Shieng Liu, Peter K. Maier-Laxhuber, Nels R. Peterson, Ralf W. Schmidt, Clarence T. Tegreene, Lowell L. Wood, Jr., Reiner M. Wörz, David J. Yager
  • Publication number: 20230414102
    Abstract: Systems and methods are described for configuring and using displays, speakers, or other output devices positioned by an article of clothing or other such structure wearable by a healthcare recipient, for example, in a clinic or residential care facility.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Paul G. Allen, Edward S. Boyden, Mahalaxmi Gita Bangera, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Eric C. Leuthardt, Dennis J. Rivet, Michael A. Smith, Elizabeth A. Sweeney, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20230372254
    Abstract: Salt formulations, which are resistant to moisture and cooking conditions, are described herein. The formulations provide particles of micronutrients and vitamins encapsulated within heat resistant pH-sensitive water-insoluble polymers, which are packaged within a salt shell. The pH-sensitive, water-insoluble, thermally stable materials stabilize the micronutrients, particularly at high temperatures, such as during food preparation and cooking, and release the micronutrients at the desired locations such as the stomach, small intestine, etc. Preferred pH-sensitive polymers release at a low pH, less than the pH present in the stomach. The particles can be used to deliver daily-recommended doses of micronutrients simultaneously with salt, eliminating the need for vitamin pills. This is particularly important in populations suffering from severe malnutrition.
    Type: Application
    Filed: December 16, 2022
    Publication date: November 23, 2023
    Inventors: Ana Jaklenec, Xian Xu, Lowell L. Wood, Jr., Philip A. Welkhoff, William Gates, Boris Nikolic, Robert S. Langer
  • Patent number: 11786142
    Abstract: Ingestible radio frequency identification (RFID) tags are disclosed. A system embodiment includes, but is not limited to, an RFID tag including a flexible substrate foldable between a planar configuration and a tubular configuration, a conductive element disposed on the flexible substrate, and an RFID tag chip electrically coupled with the conductive element; a capsule structured and dimensioned for ingestion by a biological subject, the capsule including a shell structured and dimensioned to enclose a medication for the biological subject simultaneously with the RFID tag when the flexible substrate is in the tubular configuration, but not when the flexible substrate is in the planar configuration; and a pH switch structure coupled to an exterior surface of the capsule, the pH switch configured to deactivate the RFID tag in a first configuration and to permit activation of the RFID tag in a second configuration within the biological subject.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: October 17, 2023
    Assignee: TOKITAE LLC
    Inventors: Ari Karchin, Mark S. Freeman, Fridrik Larusson, Steven A. Rodriguez, Lowell L. Wood, Jr.
  • Patent number: 11789200
    Abstract: According to various embodiments, an array of elements forms an artificially-structured material. The artificially-structured material can also include an array of tuning mechanisms included as part of the array of elements that are configured to change material properties of the artificially-structured material on a per-element basis. The tuning mechanisms can change the material properties of the artificially-structured material by changing operational properties of the elements in the array of elements on a per-element basis based on one or a combination of stimuli detected by sensors included in the array of tuning mechanisms, programmable circuit modules included as part of the array of tuning mechanisms, data stored at individual data stores included as part of the array of tuning mechanisms, and communications transmitted through interconnects included as part of the array of elements.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 17, 2023
    Assignee: Elwah LLC
    Inventors: Daniel Arnitz, Patrick Bowen, Seyedmohammadreza Faghih Imani, Joseph Hagerty, Roderick A. Hyde, Edward K. Y. Jung, Guy S. Lipworth, Nathan P. Myhrvold, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Lowell L. Wood, Jr.
  • Patent number: 11785866
    Abstract: A superconductor device includes a high superconductivity transition temperature enhanced from the raw material transition temperature. The superconductor device includes a matrix material and a core material. The enhancing matrix material and the core material together create a system of strongly coupled carriers. A plurality of low-dimensional conductive features can be embedded in the matrix. The low-dimensional conductive features (e.g., nanowires or nanoparticles) can be conductors or superconductors. An interaction between electrons of the low-dimensional conductive features and the enhancing matrix material can promote excitations that increase a superconductivity transition temperature of the superconductor device.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 10, 2023
    Inventors: Philipp Braeuninger-Weimer, Nathan P. Myhrvold, Conor L. Myhrvold, Cameron Myhrvold, Clarence T. Tegreene, Roderick A. Hyde, Lowell L. Wood, Jr., Muriel Y. Ishikawa, Victoria Y. H. Wood, David R. Smith, John Brian Pendry, Charles Whitmer, William Henry Mangione-Smith, Brian C. Holloway, Stuart A. Wolf, Vladimir Z. Kresin
  • Publication number: 20230319178
    Abstract: A computing device determines that the computing device is within wireless proximity to a secondary wireless device. Based on the computing device being within wireless proximity to the secondary wireless device, the computing device determines at least one function of the secondary wireless device, and generates an aggregate user interface for display on a display screen of the computing device. The aggregate user interface identifies the secondary wireless device and indicates the at least one function of the secondary wireless device. The computing device receives, via the aggregate user interface, a user input selecting the secondary wireless device. Responsive to the user input, the computing device presents a second user interface including one or more selectable features for operating the secondary wireless device.
    Type: Application
    Filed: April 7, 2023
    Publication date: October 5, 2023
    Inventors: Edward K.Y. JUNG, Royce A. LEVIEN, Robert W. LORD, Mark A. MALAMUD, John D. RINALDO, Jr., Lowell L. WOOD, Jr.
  • Patent number: 11638676
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: May 2, 2023
    Assignee: VENTRK, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 11627214
    Abstract: A computing device determines that the computing device is within wireless proximity to a secondary wireless device. Based on the computing device being within wireless proximity to the secondary wireless device, the computing device determines at least one function of the secondary wireless device, and generates an aggregate user interface for display on a display screen of the computing device. The aggregate user interface identifies the secondary wireless device and indicates the at least one function of the secondary wireless device. The computing device receives, via the aggregate user interface, a user input selecting the secondary wireless device. Responsive to the user input, the computing device presents a second user interface including one or more selectable features for operating the secondary wireless device.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 11, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Lowell L. Wood, Jr.
  • Publication number: 20230039421
    Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.
    Type: Application
    Filed: June 9, 2022
    Publication date: February 9, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, JR., Philip A. Eckhoff
  • Patent number: 11541017
    Abstract: Salt formulations, which are resistant to moisture and cooking conditions, are described herein. The formulations provide particles of micronutrients and vitamins encapsulated within heat resistant pH-sensitive water-insoluble polymers, which are packaged within a salt shell. The pH-sensitive, water-insoluble, thermally stable materials stabilize the micronutrients, particularly at high temperatures, such as during food preparation and cooking, and release the micronutrients at the desired locations such as the stomach, small intestine, etc. Preferred pH-sensitive polymers release at a low pH, less than the pH present in the stomach. The particles can be used to deliver daily-recommended doses of micronutrients simultaneously with salt, eliminating the need for vitamin pills. This is particularly important in populations suffering from severe malnutrition.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: January 3, 2023
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, TOKITAE LLC
    Inventors: Ana Jaklenec, Xian Xu, Lowell L. Wood, Jr., Philip A. Welkhoff, William Gates, Boris Nikolic, Robert S. Langer
  • Publication number: 20220387952
    Abstract: Combined combustion and pyrolysis (CCP) systems, and associated systems and methods, are disclosed herein. In some embodiments, the CCP system includes an input valve fluidly coupleable to a fuel supply to receive a hydrocarbon reactant, a CCP reactor fluidly coupled to the input valve, and a carbon separation component fluidly coupled to the CCP reactor. The CCP reactor can include a combustion chamber, a reaction chamber in thermal communication with the combustion chamber and/or fluidly coupled to the input valve, and an insulating material positioned to reduce heat loss from the combustion chamber and/or the reaction chamber. The CCP reactor can also include a combustion component positioned to combust a fuel within the combustion chamber. The combustion can heat the reaction chamber and the hydrocarbon reactant flowing therethrough. The heat causes a pyrolysis of the hydrocarbon reactant that generates hydrogen gas and carbon.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Roelof E. Groenewald, Kevin J. Hughes, William Kokonaski, Max N. Mankin, Tony S. Pan, Lowell L. Wood, John J. Lorr, Amit Goyal, Guido Radaelli, Vikram Seshadri, MJ Mahdi, Matthew Ballard, Stephen Harris, Alex Pearse, Jeff Henry
  • Publication number: 20220367070
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: June 12, 2022
    Publication date: November 17, 2022
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John R. Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 11482344
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 25, 2022
    Assignee: TERRAPOWER, LLC
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20220315424
    Abstract: Systems for producing hydrogen gas for local distribution, consumption, and/or storage, and related devices and methods are disclosed herein. A representative system includes a pyrolysis reactor system that can be coupled to a supply of reaction material that includes a hydrocarbon. The pyrolysis reactor system includes one or more combustion components positioned to transfer heat to the reaction material to convert the hydrocarbon into an output that includes hydrogen gas and carbon particulates. The pyrolysis reactor system also includes a carbon separation system positioned to separate the hydrogen gas the carbon particulates in the output. In various embodiments, the system also includes components to locally consume the filtered hydrogen gas, such as a power generator, heating appliance, and/or a combined heat and power device.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Inventors: Justin B. Ashton, Roelof E. Groenewald, Kevin J. Hughes, William Kokonaski, Max N. Mankin, Tony S. Pan, Levi D. Rodriguez, Lowell L. Wood, John J. Lorr, Amit Goyal, Guido Radaelli, Vikram Seshadri, MJ Mahdi, Matthew Ballard, Stephen Harris, Alex Pearse