Patents by Inventor Lu Velicky

Lu Velicky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8669179
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20130295766
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Patent number: 8502353
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20110233777
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Patent number: 7956443
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, Mark Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Publication number: 20100171217
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 8, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Patent number: 7683458
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Patent number: 7452743
    Abstract: Microelectronic imaging units and methods for manufacturing a plurality of imaging units at the wafer level are disclosed herein. In one embodiment, a method for manufacturing a plurality of imaging units includes providing an imager workpiece having a plurality of imaging dies including integrated circuits, external contacts electrically coupled to the integrated circuits, and image sensors operably coupled to the integrated circuits. The individual image sensors include at least one dark current pixel at a perimeter portion of the image sensor. The method includes depositing a cover layer onto the workpiece and over the image sensors. The method further includes patterning and selectively developing the cover layer to form discrete volumes of cover layer material over corresponding image sensors. The discrete volumes of cover layer material have sidewalls aligned with an inboard edge of the individual dark current pixels such that the dark current pixels are not covered by the discrete volumes.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: November 18, 2008
    Assignee: Aptina Imaging Corporation
    Inventors: Steven D. Oliver, Lu Velicky, William Mark Hiatt, David R. Hembree, Mark E. Tuttle, Sidney B. Rigg, James M. Wark, Warren M. Farnworth, Kyle K. Kirby
  • Publication number: 20080111213
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 15, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Patent number: 7300857
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: November 27, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky
  • Publication number: 20070045632
    Abstract: Microelectronic imaging units and methods for manufacturing a plurality of imaging units at the wafer level are disclosed herein. In one embodiment, a method for manufacturing a plurality of imaging units includes providing an imager workpiece having a plurality of imaging dies including integrated circuits, external contacts electrically coupled to the integrated circuits, and image sensors operably coupled to the integrated circuits. The individual image sensors include at least one dark current pixel at a perimeter portion of the image sensor. The method includes depositing a cover layer onto the workpiece and over the image sensors. The method further includes patterning and selectively developing the cover layer to form discrete volumes of cover layer material over corresponding image sensors. The discrete volumes of cover layer material have sidewalls aligned with an inboard edge of the individual dark current pixels such that the dark current pixels are not covered by the discrete volumes.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 1, 2007
    Applicant: Micron Technology, Inc.
    Inventors: Steven Oliver, Lu Velicky, William Hiatt, David Hembree, Mark Tuttle, Sidney Rigg, James Wark, Warren Farnworth, Kyle Kirby
  • Publication number: 20060043599
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Inventors: Salman Akram, Charles Watkins, Mark Hiatt, David Hembree, James Wark, Warren Farnworth, Mark Tuttle, Sidney Rigg, Steven Oliver, Kyle Kirby, Alan Wood, Lu Velicky